П.П. Мурзинцев Д.Б. Буренков А.В. Полянский Л.Е. Сердаков

Геодезическое обеспечение проектирования, строительства, эксплуатации и мониторинга ускорительно-накопительных комплексов

Новосибирск 2021 УДК 528.3:621.384 ББК 26.12+22.38 Г35

Рецензенты:

Костюченко В. Я., доктор физ. мат. наук, доцент кафедры общей физики ФГБОУ ВПО «Новосибирский государственный технический университет»;

Щербаков В. В., д.т.н., доцент, зав. кафедрой инженерной геодезии, ФГБОУ ВПО «Сибирский государственный университет путей сообщений»

Авторы:

доцент, к.т.н. П. П. Мурзинцев, к.т.н. А. В. Полянский, к.т.н. Д. Б. Буренков, к.т.н. Л. Е. Сердаков

Под общей редакцией доцента, к.т.н. П. П. Мурзинцева

Геодезическое обеспечение проектирования, строительства, ГЗ5 эксплуатации и мониторинга ускорительно-накопительных комплексов : монография / П. П. Мурзинцев, А. В. Полянский, Д. Б. Буренков, Л. Е. Сердаков; под общей редакцией П. П. Мурзинцева – Новосибирск : Агентство «Сибпринт», 2021. – 232 с. : илл. ISBN 978-5-94301-863-3

В монографии обобщен опыт создания отечественных и зарубежных ускорителей заряженных частиц. Излагаются новые подходы к проектированию и строительству ускорительно-накопительных комплексов (УНК) с учетом методов и технологий активно применяющихся в настоящее время и перспективные направления их развития. В качестве главной особенности показана необходимость учета фактора создания новых установок на базе уже находящихся в эксплуатации. Предложены методологические и технологические решения для создания УНК с учетом технологических связей, модульного принципа сборки.

Рекомендуется научным работникам, преподавателям и аспирантам, магистрантам, студентам старших курсов, изучающим инженерную геодезию для уникальных сооружений.

Печатается по решению Научно-технического совета Института геодезии и менеджмента ФГБОУ ВПО «Сибирский государственный университет геосистем и технологий».

УДК 528.3:621.384 ББК 26.12+22.38

© Мурзинцев П. П., Полянский А. В., Буренков Д. Б., Сердаков Л. Е., 2021

ISBN 978-5-94301-863-3

ПРЕДИСЛОВИЕ

Добрый день, Уважаемый читатель!

Большое спасибо Вам за интерес, за то что взяли в руки наш скромный труд. Причин для написания этой книжки было несколько. Главная из них заключается в следующем. Читая лекции студентам Сибирского государственного университета геосистем и технологий (НИИГАиК, СГГА), задаю один и тот же вопрос. Чем знаменит наш город Новосибирск, какими основными достопримечательностями располагает? Лишь совсем немногие называют Новосибирский академгородок, точнее Сибирское Отделение Российской академии наук. Про конкретные научно-исследовательские институты и говорить не приходится. Между тем, один из мировых центров изучения физики высоких энергий, элементарных частиц находится именно у нас в Западной Сибири. Это институт ядерной физики имени Будкера ИЯФ СО РАН. Волею судьбы после окончания Новосибирского института геодезии, аэрофотосъемки и картографии по специальности «Прикладная геодезия» в 1982 году и защиты кандидатской диссертации в 1986 году автор этих строк был направлен на стажировку в ИЯФ. Относительно молодой и самоуверенный, думал что удивить меня будет трудно, так как имел опыт работы в области инженерной геодезии; на геодезическом обеспечении строительства и эксплуатации уникальных инженерных сооружений таких как; метромоста через реку Обь, Ленинградской АЭС, Смоленской АЭС, Калининской АЭС, нефтехимических заводов. Ведь прослушав лекции замечательных ученых-корифеев по направлениям прикладной геодезии Конусова Виктора Геннадьевича, Уставича

Георгия Афанасьевича, Ямбаева Харьеса Каюмовича, Резанцева Геннадия Григорьевича, Маркузе Юрия Исидоровича, Мицкевича Валерия Ивановича, Пискунова Матвея Егоровича, Бокова Марка Аркадьевича и многих других не предполагал, что в геодезической группе ИЯФ СО РАН возникают столь специфические задачи производства высокоточных геодезических измерений. Руководитель группы Пупков Юрий Алексеевич, человек с великолепным чувством юмора энциклопедическими знаниями, как в области физики элементарных частиц, так и в области прикладной геодезии и математической обработки результатов измерений поставил задачу разработки методики высокоточного нивелирования в кольце тоннеля ВЭПП-4 со средней квадратической погрешностью не грубее 0.15 мм.

Юрий Алексеевич сказал: «Это должно быть обязательно нивелирование короткими лучами, петле-зигзагообразное, с десятком промежуточных контролей и замыканием общего кольца на наши специально изготовленные нивелирные рейки и шкалы». С однокашником по группе Левашовым Юрием Ивановичем (сейчас он работает в Стэнфордском университете в США) приступили к решению задачи. Позднее разработанная методика найдет отражение в его кандидатской диссертации (глава 3). Мы, конечно, знали, что в отличие от классической геодезии, когда геодезический центр находится в земле на глубине ниже глубины промерзания, над ним устанавливается геодезический сигнал, в прикладной геодезии, геодезический центр, точнее знак может быть на какой угодно высоте и иметь достаточно странную конструкцию с виртуальным центром-носителем координат. Удивили размеры нивелирных реек 40 см и шкал 5 см, но и даже на них необходимо было выбрать только один штрих, чтобы исключить ошибку фокусирования зрительной трубы. Магниты в кольце тоннеля подвешены на потолке, приходилось выполнять высокоточные геодезические измерения с помощью мерных жезлов, с применением лестниц и т.п. Все пространственное положение уникального оборудования, включая геодезические знаки изменяется, корректируется. Может быть, трудность научно-исседовательских задач формирует, какую-то удивительную атмосферу творческого поиска и созидания. Знаменитый дух ИЯФа бережно сохраняется и доныне, с помощью круглого стола, придуманного Будкером, когда на научных семинарах, совещаниях, планерках, академик, внимательно слушает лаборанта–стажера, слесаря, понимая, что только общими усилиями создаются уникальные установки, которым нет равных в мире.

Пожалуй, только установка ВЭПП-1, созданная под руководством Будкера Г. А., на которой впервые в мире, было зарегистрировано рассеивание электронов, не потребовала участия инженеров-геодезистов. Однако, с увеличением размеров и мощности энергетических установок возникли задачи по проектированию, изготовлению, установке уникального физического оборудования, мониторингу в процессе эксплуатации, которые не возможно было решить без участия специалистов в области прикладной геодезии. Авторы рады, что принимают участие в решении этих задач и о некоторых методиках выполнения высокоточных геодезических измерений, геодезическом оборудовании, прецизионной установки, контроле геопространственного положения установок ИЯФ СО РАН будет рассказано в этой книге.

ВВЕДЕНИЕ

Развитие науки и наукоемких технологий требует создания различных уникальных сооружений. В этом ряду ускорители заряженных частиц являются одним из основных инструментов исследований в современной физике и всё большее применение находят в других областях науки. Эффективность проведения научных экспериментов на ускорительно-накопительных комплексах (УНК) во многом зависят от соблюдения требований к точности установки элементов магнитной структуры в проектное положение. Комплексы могут состоять из тысяч единиц оборудования, которые необходимо смонтировать в единое целое с высокой точностью.

Создание современного УНК, с точки зрения соблюдения его геометрических параметров, предполагает наличие геодезической составляющей практически на всех стадиях этого трудоемкого и сложного процесса. Важной научнотехнической задачей является разработка комплекса инженерно-геодезических измерений с соблюдением преемственности данных при проектировании, изготовлении, монтаже физического оборудования и эксплуатации ускорителей.

В Российской Федерации более двадцати пяти лет лет не создавались ускорительно–накопительные установки большой мощности. Однако в последние годы в этом направлении предприняты крупные шаги. Принято постановление Правительства РФ от 23 декабря 2019 г. № 1777 о строительстве под Новосибирском уникального ускорительно – накопительного комплекса источника синхротронного излучения 4–го поколения, «Центра коллективного пользования сибирского кольцевого источника фотонов (ЦКП «СКИФ»).

Допуски на установку магнитных элементов структуры УНК находятся в диапазоне 0,5–0,1 мм и наблюдается устойчивая тенденция к их повышению. Современные лазерные трекеры позволяют достичь требуемой точности геодезических измерений для обеспечения монтажа оборудования при выполнении необходимых исследований и разработке специальных методик..

В то же время в научно-технической литературе практически отсутствуют рекомендации по эффективному применению лазерных трекеров, не отражаются результаты исследований по максимально достижимой для них точности и факторы влияющие на этот процесс. Вопросы моделирования пространственных геодезических сетей и производства геодезических измерений в программном комплексе Spatial Analyzer не решены.

Таким образом возникает необходимость постановки и решения научной проблемы геодезического обеспечения проектирования, строительства эксплуатации и мониторинга уникального оборудования ускорительно-накопительных комплексов 4–го и последующих поколений с помощью лазерных трекеров. Исследованиям в этой области, разработкам методик геодезического обеспечения создания и эксплуатации УНК с помощью лазерных трекеров, обеспечению монтажа оборудования, пространственному мониторингу, моделированию геодезических измерений в модуле Measurement Simulation программного продукта Spatial Analyzer и посвящена настоящая монография.

1 ГЕОДЕЗИЧЕСКОЕ ОБЕСПЕЧЕНИЕ жизненного цикла ускорителей заряженных частиц

1.1 Общие сведения об ускорителях заряженных частиц

Ускорители заряженных частиц – основной источник экспериментальных данных физики высоких энергий. Конструкционно различают циклические и линейные ускорители. Современные циклические ускорители по своему назначению подразделяются на два основных типа: экспериментальные физические установки – коллайдеры и прикладные источники синхротронного излучения.

Пучок частиц, не испытывающий никаких возмущений на своем пути, движется по так называемой равновесной орбите. В реальности таких условий достичь невозможно, так как при движении в магнитных полях оптической структуры ускорителя пучок испытывает поперечные колебания, называемые бетатронными. Движение частиц в ускорителе описывается в цилиндрической системе координат, рисунок 1.2. Радиальным (R) называется положение частиц, лежащих в медианной плоскости оптической структуры. Медианная плоскость для большинства ускорительных комплексов распологается горизонтально. На одном из первых ускорителей ВЭП-1 медианная плоскость рспологалась вертикально. [33, 100]. Положение частиц, перпендикулярное медианной плоскости равновесной орбиты, называется вертикальным (Z). Продольное движение вдоль равновесной частицы называется азимутальным (S).

Следует отметить, что обычно равновесная орбита представляет собой не кольцевую замкнутую траекторию, а совокупность кривых, соединённых касательными [37].

Заряженный пучок в ускорителе описывают координатами центра масс группы частиц. Система координат описывает равновесную орбиту движения частиц. Пучок, движущийся вдоль оси *S*, характеризуется положением центра масс со среднеквадратичными поперечными размерами σ_r , σ_z и продольным σ_s , рисунок 1.3. Важным параметром любого ускорителя является эммитанс, объем фазового пространства, внутри которого находится 95 % частиц (2 σ). Измеряется в мм•мрад [70].

Рисунок 1.2 – Схематическое изображение движение пучка частиц относительно равновесной орбиты

Коллайдеры – установки, в которых заряженные частицы получают высокую кинетическую энергию и сталкиваются в определенных местах, где с помощью специальных детекторов фиксируются продукты их распада. Существует два типа коллайдеров. В случае, если пучки частиц одинаковы по массе, но разные по заряду, они движутся друг навстречу другу по одной вакуумной камере, и их траектория корректируется одной оптической структурой [74]. Если частицы имеют оди1. ГЕОДЕЗИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЖИЗНЕННОГО ЦИКЛА УСКОРИТЕЛЕЙ ЗАРЯЖЕННЫХ ЧАСТИЦ _____

наковый заряд и разные массы, реализация такого типа коллайдера представляет собой две ускорительных орбиты, пересекающихся в определенных местах, рисунок 1.4.

Рисунок 1.3 – Пучок частиц в системе координат равновесной орбиты ускорителя

Рисунок 1.4 – Две схемы реализации коллайдеров: а) встречные протон-протонные или электрон-антипротонные пучки; б) встречные элетрон-позитронные или протон-антипротонные пучки Важным параметром любого коллайдера является светимость – характеристика, показывающая количество взаимодействий частиц встречных пучков за единицу времени.

Источники синхротронного излучения – циклические ускорители заряженных частиц, предназначенные для генерации синхротронного излучения. Синхротронное излучение – магнитотормозное излучение, испускаемое частицами, движущимися со скоростями, близкими к скорости света, в результате воздействия на них магнитного поля при движении по круговой орбите.

Лазеры на свободных электронах – современные установки для генерации пучка электронов посредством периодической системы отклоняющих полей (ондуляторы) [102,116,117].

Геометрически синхротронное излучение можно представить в виде плоского «веера», исходящего по касательной к круговой орбите движения частицы. На длине дуги $\Delta\theta$ происходит вывод СИ; ψ – угол вертикальной расходимости пучка. Чем больше энергия, тем меньше расходимость перпендикулярно плоскости орбиты, рисунок 1.5 [91].

Источники СИ 4-го поколения, отличаются от своих предшественников малым эммитансом 100–10 пм. В настоя-

Рисунок 1.5 – Геометрическая интерпретация распределения синхротронного излучения в плоскости орбиты и перпендикулярно ей

щее время функционируют или находятся в стадии запуска несколько таких циклических источников СИ (MAX-IV – Швеция, EBS-ESRF – Франция, Sirius – Бразилия). К 4-му поколению будет относиться проектируемый СКИФ (Сибирский Кольцевой Источник Фотонов).

Подавляющее большинство современных циклических ускорителей заряженных частиц состоят из линейного ускорителя (линак); бустера (одного или нескольких предускоряющих колец) и основного ускорителя. Все эти ускорители соединены каналами транспортировки пучка.

1.2 Сооружения для размещения ускорителей заряженных частиц и создание современных ускорительно-накопительных комплексов

В мировой практике все старейшие исследовательские ускорительные центры развиваются по определенному сценарию. На площадках с уже существующими ускорителями, выполнившими свою научную программу, создаются новые ускорительные установки. Старые комплексы модернизирую для совместной работы с новыми установками в качестве предускорителей, т.е. по сути формируется новый ускорительный комплекс. Строительство тоннелей и зданий для размещения новых крупных блоков УНК с точки зрения взаимного расположения с уже существующими регламентируется нормами обычными для гражданского строительства [10, 11, 44, 54, 56]. Уточняется взаимное положение крупных блоков ускорительных комплексов в большинстве случаев после окончания строительства тоннелей и проведения их исполнительной съемки. На основании исполнительной съемки проектируются (либо допроектируются) каналы транспортировки пучка (перепускные каналы), которые связывают крупные блоки. Так как каналы транспортировки

имеют возможность корректировать траекторию пучка в достаточно больших пределах, величина погрешности определения взаимного положения ускорителя и предускорителя (бустера) лежит в рекомендуемом практикой диапазоне ± 3,0 мм.

Тоннель для ускорителя является в некотором смысле « футляром», в котором необходимо соблюсти все предусмотренные требования, предъявляемые техническим надзором и безопасностью эксплуатации, к геометрическим параметрам. Строительство же заведомо более просторного тоннеля при возросших протяженностях ускорителей становится экономически не целесообразным. Основные геодезические работы при строительстве тоннелей УНК включают: развитие наземного планового и высотного обоснования; передачу координат и направления в тоннель; развитие подземного планового и высотного обоснования; задание направления на проходку; исполнительную съемку сечений тоннеля. Основной величиной, характеризующей качество работ при проходке тоннелей, является сбойка. Допуски на сбойку указанные нормативными документами по производству маркшейдерских работ составляют 0,2 м в плане и 0,1 м по высоте [61]. При строительстве тоннеля встречными забоями допускается расхождение фактических осей в пределах ± 100 мм [57]. При строительстве тоннелей УНК устанавливаются более жесткие требования к сбойке ± 25 мм, таблица 1.2. Эта величина принимается за предельную погрешность (2σ).

Таблица 1.2

Контролируемый параметр	Допуск, мм
Отклонение оси тоннеля от проектного	50,0
положения	

1. ГЕОДЕЗИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЖИЗНЕННОГО ЦИКЛА УСКОРИТЕЛЕЙ ЗАРЯЖЕННЫХ ЧАСТИЦ _____

Контролируемый параметр	Допуск, мм
Максимально допустимая величина погрешно-	25,0
сти сбойки осей участков тоннеля, сооружаемых	
встречными забоями	
СКП положения пункта подземной маркшейдер-	5,0
ской опорной сети относительно пункта наземной	
опорной сети	

1.3 Вопросы проектирования ускорительно-накопительных комплексов

Основополагающими характеристиками при проектировании любого ускорительно-накопительного комплекса являются параметры пучка частиц. Далее определяют градиенты полей и длины электромагнитов, апертуру вакуумной камеры и т. д.

Динамическое моделирование оптической структуры позволяет определить оптимальные магнитные поля и их силы, необходимые для достижения проектных параметров пучка. В работах Ю. А. Пупкова [63, 64] рассматривается метод расчета искажений орбиты пучка. Матрица искажений орбиты определяется как:

$$A_{ij} = \frac{G_j \cdot l_j \cdot \cos \nu \left(\pi + \theta_i - \theta_j\right)}{2B \cdot \nu \cdot \sin \pi \nu}; \qquad (1.1)$$

$$\theta_i = \frac{S_i}{R},\tag{1.2}$$

где G, l – градиент поля и длина j – элемента структуры; v – бетатронная частота ускорителя; B – корреляционная матрица погрешностей положения элементов; S – расстояния между последовательно расположенными

элементами, где *i* – элемент, условно принятый за начальный; *R* – средний радиус орбиты.

Матрица A с погрешностью в 30 % позволяет производить проектирование оптической структуры ускорительнонакопительного комплекса [111].

Важным этапом проектирования ускорительного комплекса является расчет спектральной чувствительности замкнутой орбиты к погрешностям элементов оптической структуры, допущенными при установке в проектное положение геодезическими средствами. Спектральная чувствительность позволяет определить опасные гармоники возмущения – резонансные раскачки амплитуд бетатронных колебаний.

Расчет допустимых искажений равновесной орбиты необходим для определения величин допусков на изготовление электромагнитных элементов ускорителя и их установки в проектное положение на объекте эксплуатации [92]. Допустимая погрешность установки последовательно расположенных сильнофокусирующих элементов (квадруполей) определяется по формуле:

$$m_{\text{квадруполь}} = \frac{D \cdot L \cdot \sqrt{2 \sin \pi \nu}}{5 \cdot \sqrt{\beta C}}, \qquad (1.3)$$

где *D* – апертура вакуумной камеры; *L* – расстояние между соседними квадруполями; β – максимальная длина бетатронной волны; *C* – периметр ускорителя.

Величины, полученные по формуле 1.3, обычно меньше 0,05 мм, что лежит на грани достижимых точностных возможностей современных геодезических средств измерений при установке в проектное положение. Поэтому в оптическую структуру ускорителей включают корректирующие элементы, позволяющие изменять орбиту пучка в диапазоне ~ 0,25 мм на длине между корректором и линзой [61].

Когда выбранная конфигурация оптической структуры позволяет обеспечивать заданные параметры пучка частиц, на основании результатов математического моделирования выбирают схему взаимной установки элементов ускорителя. В зависимости от типа и габаритов электромагнитов формируется подход к технологии установки в проектное положение, рисунок 1.6.

Существует два основных типа электромагнитов: классический – конструкционно состоящий из ферромагнитного сердечника и обмотки, по которой протекает электрический ток; сверхпроводящий – состоящий из материалов, которые при охлаждении до очень низких температур (1,9 К), приобретают сверхпроводящие свойства.

Рисунок 1.6 – Концепция установки группы элементов оптической структуры на примере источника СИ ALBA (Испания): 1 – принятая оптическая структура ускорителя после матема-

- принятая оптическая структура ускорителя после математического моделирования;
 - 2 предложенный вариант установки элементов на гирдере

Установка элементов в проектное положение в тоннеле ускорителя в основном базируется на двух подходах:

 индивидуальный – каждый элемент устанавливается на свою металлоконструкцию;

 модульный – группа последовательно расположенных элементов устанавливается на единую основу – гирдер [52].

Существуют оригинальные решения позиционирования элементов. На электрон-позитронном коллайдере ВЭПП-4М магнитная структура закреплена на потолке тоннеля.

Вариант индивидуальной подставки используют при больших массогабаритных параметрах элемента. Также при монтаже ускорителей, структура которых состоит из сверхпроводящих магнитов, используют подставки как элемент несущей конструкции, рисунок 1.7.

В источниках синхротронного излучения последнего поколения принят модульный принцип установки. Такой подход упрощает монтаж, так как на одном гирдере находится группа уже установленных на ось пучка элементов.

а)
Б)
Рисунок 1.7 – Подставки для элементов ускорителя:
а) подставки для сверхпроводящих магнитов Нуклотрона (ОИЯИ, г. Дубна);
б) подставки для электромагнитов ускорителя SPS, входящего в комплекс большого адронного коллайдера Также важным моментом в ходе проектирования ускорительно-накопительного комплекса является геологическая изученность местности, на которой будет производиться строительство. От этого зависит выбор типа фундамента, который будет обеспечивать стабильность положения всего комплекса. Общепринятой является установка оборудования источников синхротронного излучения на едином фундаменте, который не связан с основанием стен здания [54, 56].

По результатам сейсмической изученности района определяют частоты грунтовых вибраций [14, 76–78]. При внешнем воздействии (грунтовые вибрации, движение воды в охлаждающих патрубках магнитных элементов и прочее) в системе «элемент – гирдер» возникают сложные колебания, состоящие из возмущающей и собственной частот. Эти колебания негативно влияют на орбиту пучка при эксплуатации. Для определения влияния на систему возмущающей частоты существует понятие коэффициента динамичности ($\varepsilon_{к,n}$). Определяется он по формуле:

$$\varepsilon_{\kappa,\mathrm{d.}} = \frac{1}{\left|1 - \left(\frac{\omega^2}{\rho^2}\right)\right|},\tag{1.4}$$

где ω – частота возмущения; ρ – собственная частота системы.

Коэффициент динамичности зависит только от соотношения ω/ρ . На графике ,рисунок 1.8, представлена зависимость системы «гирдер – элемент», выраженной через коэффициент динамичности $\varepsilon_{_{\kappa,\pi}}$ от изменений результирующих колебаний. Значение $\varepsilon = 1$ указывает на статическое положение системы. При равном значении собственной и возмущающей частот система входит в резонанс, что опасно для конструкции. При достаточно больших значениях ω/ρ система не успевает реагировать на быстрые изменения высокочастотной возмущающей силы.

Рисунок 1.8 – График зависимости коэффициента динамичности от соотношения ω/ρ

Практика проектирования показывает, что система «гирдер – элемент» должна иметь первую собственную частоту > 20 Гц, чтобы не возникло резонанса от грунтовых колебаний [119].

1.4 Допуски на геометрические параметры магнитных систем ускорителей заряженных частиц

С увеличением размеров ускорительных комплексов создавались и модернизировались методики установки технологического оборудования в проектное положение. Параллельно с этим шла непрерывная разработка и модернизация оборудования для производства высокоточных геодезических измерений, а так же разработка методов и средств поверки и калибровки.

Представим магнитный элемент как твердое неделимое тело, расположенное в локальной системе координат. Твердое тело-магнитный элемент, имеет шесть степеней свободы. Три степени свободы - это смещение по каждой из осей ло1. ГЕОДЕЗИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЖИЗНЕННОГО ЦИКЛА УСКОРИТЕЛЕЙ ЗАРЯЖЕННЫХ ЧАСТИЦ _____

кальной системы координат. Оставшиеся три - это вращения вокруг этих осей.

Изучение динамики заряженных частиц в укорителях позволило определить, что требования к точности установки магнитной системы должны быть различными по направлениям. Так в поперечных направлениях к орбите допуски более жесткие, чем в направлении вдоль орбиты. Допустимые искажения равновесной орбиты из-за ошибок установки магнитных элементов принимают равными ~ 1/10 части апертуры вакуумной камеры. В ускорителях с жесткой фокусировкой эта величина порядка сантиметра, что определяет точность установки магнитных элементов ~ 0,1 мм. [49]. Разные магнитные элементы имеют разные требования. В таблице 1.3 приведены обобщенные требования к точности юстировки магнитных элементов ускорительных комплексов.

Следует подчеркнуть, что для каждой конкретной установки требования к точности могут отличаться от приведенных в таблице 1.3.

Элемент	ΔR, мм	ΔΖ, мм	ΔQ, мм	α,ω и ψ, мрад
Квадру- поль	0,1-0,2	0,2	1,0	0,1
Диполь	1,0	0,2	0,5	0,1
Другие элементы	0,5	0,5	1,0	1,0

Таблица 1.3 – Обобщенные допуски на установку магнитных элементов ускорительных комплексов [33].

Ошибки установки магнитных элементов в проектное положение складываются из:

20

 погрешности определения положения магнитных осей относительно базовых поверхностей и центров геодезических знаков магнита;

 погрешности юстировки магнитов от знаков геодезической сети;

 погрешности определения координат знаков геодезической сети.

Среднеквадратическое искажение орбиты пропорционально среднеквадратической ошибке установки магнитных элементов:

$$\langle Y \rangle = \gamma \sigma_{ycm.}$$
 (1.5)

Для большинства ускорителей коэффициент искажения орбиты у лежит в диапазоне 20-50. Задавая допустимую величину «У» и зная у конкретного ускорителя, формируются требования к $\sigma_{y_{cm}}$. Допуски задаются в виде среднеквадрати-ческих отклонений магнитных осей элементов от их проектного (расчетного) пространственного положения, предполагая, что ошибки установки магнитных элементов являются случайными и некоррелированными. Отклонения определяются в единой для комплекса системе координат, которую условно можно назвать абсолютной. При протяженности ускорителей в сотни метров допуски на установку физического оборудования получались близкими к достигнутому на современном этапе уровню точности измерений. Уже при таких сравнительно небольших размерах УНК прецизионная юстировка элементов магнитной структуры является сложной научно-технической задачей. При существенном увеличение размеров УНК до нескольких километров выполнение установленных требований в прежней, абсолютной формулировке, стало практически невозможным. Сформировался

1. ГЕОДЕЗИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЖИЗНЕННОГО ЦИКЛА УСКОРИТЕЛЕЙ ЗАРЯЖЕННЫХ ЧАСТИЦ _____

новый подход к заданию допусков на точность выверки физического оборудования ускорителей, основанный на учете корреляции ошибок установки магнитных элементов. Ошибки юстировки магнитных элементов ускорителя эквивалентны появлению возмущений магнитного поля в области, где проходят траектории частиц, приводящих к искажению замкнутой орбиты. В жесткофокусирующих системах, элементы которых точно отъюстированы взаимно, но могут плавно отклоняться от проектного положения на значительную величину (высокие положительные коэффициенты корреляции ошибок юстировки), орбита частиц плавно смещается в ту же сторону и как бы следует за сдвинутыми элементами. [75] При этом влияние ошибок юстировки сглаживается. Т.е важной с точки зрения динамики частиц является взаимная юстировка соседних магнитов, а не установка их строго в соответствии с проектом. Требования к точности установки могут быть значительно снижены. При этом следует рассматривать искажения орбиты не относительно абсолютной системы координат, а относительно центров самих элементов, которые, в свою очередь, могут быть смещены, рисунок 1.9.

Предложенный подход сформировал разработку специального метода юстировки оборудования ускорителей, основанного на применении сглаживающих кривых [30,82]. Сущность метода заключается в том, что элементы ускорителя юстируются не относительно их проектного (расчетного) положения, а относительно некоторой трендовой кривой, наилучшим образом аппроксимирующей реальное (измеренное) пространственное положение элементов магнитной структуры. Корректируется положение только тех элементов, отклонение которых от сглаживающей кривой выходит за рамки допусков на точность взаимной установки. Применение данного метода для юстировки оборудования ускорителей позволяет решить проблему согласования абсолютной и взаимной точностей и дает возможность существенно сократить объем соответствующих геодезических работ.

Рисунок 1.9 – Сглаживающая кривая на примере геодезической сети ВЭПП-4М

1.5 Геодезическое оборудование для юстировки магнитных элементов первых ускорителей

Установка оборудования в проектное положение на первых ускорителях малых размеров производилась с использованием средств измерений машиностроения – линейки, штангенциркули, уровни и т. п. С увеличением масштаба комплексов были привлечены специалисты, методики и средства измерения из инженерной геодезии [15, 17 – 19, 35 – 37, 43, 81]. Но точности, реализуемые в инженерно-геодезических работах (например, подземные выработки добычи полезных ископаемых, метро – и мостостроительство), оказались недостаточными. Потребовалось создание новых методик и приборов для геодезического обеспечения строительства и эксплуатации ускорителей, что способствовало дальнейшему развитию инженерной геодезии как науки [31, 32, 47, 49, 55, 58, 68].

Отсутствие специальных высокоточных приборов и вычислительной техники накладывало ограничение на специальные геодезические сети установок. Они должны были быть по возможности простыми, что в свою очередь накладывало геометрические ограничения при проектировании установок. Например, геодезическая сеть протонного синхротрона на 28 ГэВ, расположенного в CERN (период строительства 1954-1959 г), состояла всего из девяти геодезических знаков и представляла собой восьмиугольник с центральной опорной точкой. Для обеспечения возможности геодезических измерений по этой схеме, при проектировании тоннеля кроме самого кольца, периметром около 650 м, пришлось закладывать строительство четырех диаметральных тоннелей длиной по 200 м каждый, что существенно увеличило стоимость установки еще на этапе строительства. Геодезия того времени опиралась в основном на угловые измерения. В качестве основного прибора для производства измерений использовался теодолит. Для выполнения геодезических работ на протонном синхротроне использовались высокоточные теодолиты Вильд Т-3. Вильд Т-3 – оптический теодолит высокой точности с микрометром на плоскопараллельных пластинах.

Достоинством микрометра с плоскопараллельными пластинками является его компактность и достаточно высокая точность измерений. Однако ему присущи и недостатки: микрометр имеет мертвый ход; он достаточно сложен в изготовлении (погрешности изготовления его узлов обусловливают наличие систематических ошибок, хотя и малых по величине, но обязательно учитываемых при высокоточных измерениях).

Каждый, теодолит используемый на протонном синхротроне в CERNe был оборудован жестким центриром в виде шара диаметром 30 мм, а также снабжен специальной визирной целью, расположенной над осью вращения теодолита. Для достижения требуемой точности необходимо было выполнить многократные повторения геодезических измерений на каждой станции. Так при выполнении 16 приемов, погрешность азимутального смещения опорных точек восьмиугольника по отношению к центру, составила 0,166 мм для расстояния 105 м [85].

С течением времени в ускорительной физике происходило формирование более четких критериев по точности позиционирования оборудования – переход от абсолютной точности к локальной. Предложен и реализован метод сглаживания, описанный в 1.4 [33, 34, 54].

Методика высокоточных геодезических измерений инварными проволоками.

Для высокоточных измерения расстояний использовались инварные проволоки (ленты). Инвар – сплав никеля и железа, основным достоинством которого является практически нулевой коэффициент линейного расширения, что в свою очередь позволило минимизировать поправку за температуру материала в результатах геодезических измерений. Суть метода измерений состояла в том, что инварная проволока (лента), натянутая с одним постоянным усилием имеет один определенный размер. Размер измерялся на шкалах, закрепленных на концах проволоки, при помощи микроскопов. Длина каждой проволоки определялась на оптическом компараторе сравнением со вторичными эталонами длины из государственного реестра. Позже в компараторах стали использоваться стационарные интерферометры.

После запуска протонного синхротрона в 1959 году было принято решение отказаться от угловых измерений в пользу линейных. Вместо измерения углов стали измерять восемь радиальных расстояний. Точность единичного определения длины составляет \pm 0,015 мм. Использование только линейных измерений позволило на порядок увеличить точность определения координат знаков опорной геодезической сети по сравнению с сетью, где использовались линейно-угловые измерения [85].

В начале шестидесятых годов развитие вычислительной техники дало новый толчок в развитии геодезии на ускорительных комплексах. Стали разрабатываться компьютерные программы для обработки и уравнивания результатов геодезических измерений. Это в свою очередь сильно повлияло на проектирование и создание новых ускорительных комплексов. При проектировании новых установок полностью отказались от радиальных тоннелей. Опорные сети установок стали представлять собой вытянутые цепочки геодезических четырехугольников.

Дистинвар – геодезический прибор, для измерения расстояний, разработанный в CERN в 1962 году, рисунок 1.10 [78, 83]. Принцип работы – с помощью микрометра фиксировалось положение каретки с закрепленным на ней балансиром. К одному концу балансира прикреплена инварная проволока к другому груз создающий натяжение. На каретке закреплена скоба с двумя контактными штырьками, между которыми находится балансир. Прикосновение балансира к любому из штырьков включает привод мотора перемещения каретки. Каретка перемещается до тех пор, пока балансир не встанет строго между штырьками, обеспечив тем самым, оптимальное натяжение 15 кг для инварной проволоки. После этого берется отсчет по микрометру.

Рисунок 1.10 – Дистинвар

При работе с дистинваром, также как и при работе с инварными проволоками, требовалось проводить калибровку на оптической скамье, впоследствии на компараторе при помощи интерферометра. Дистинвар повысил скорость выполнения геодезических работ на ускорителях. Впоследствии был разработан полностью автоматический прибор с возможностью дистанционного управления и получения информации прямо на компьютер [75, 84]. Прибор показал высокую эффективность при длительных наблюдениях за деформациями, при выполнении работ в радиационно-опасных помещениях, при наблюдении за деформациями в работающих установках.

В качестве недостатка можно отметить, что для каждого конкретного расстояния требуется своя отдельная проволока.

1. ГЕОДЕЗИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЖИЗНЕННОГО ЦИКЛА УСКОРИТЕЛЕЙ ЗАРЯЖЕННЫХ ЧАСТИЦ _____

Высокоточный уровенный динамостат (ВУД).

Высокоточный уровенный динамостат ВУД конструкции Голубцова А. И.– устройство для измерения длины линии, разработан в 1971 году [9, 40]. В качестве мерного тела применялись инварные проволоки. В ИЯФ СО РАН высокоточный уровенный динамостат был модернизирован. Вместо инварных проволок был изготовлен комплект инварных рулеток с перфорированными отверстиями. Это сделало прибор универсальным. На рисунках 1.11, 1.12 представлен ВУД, с обозначением его компонентов.

Рисунок 1.11 – Общий вид ВУДа: 1 – посадочный цилиндр диаметра 25,4 мм; 2 – каретка; 3 – отсчетное устройство микрометра; 4 – груз противовес весом 15 кг; 5 – нож; 6 – обойма с шариком; 7 – лента рулетки с перфорированными отверстиями; 8 – рычаг; 9 – 20" уровень; 10 – вкладыш со штифтом и прижимной планкой.

ВУД обеспечивает постоянную силу натяжения для мерного тела, в данном случае, ленты, и имеет посадочный ци-

1.5 ГЕОДЕЗИЧЕСКОЕ ОБОРУДОВАНИЕ ДЛЯ ЮСТИРОВКИ МАГНИТНЫХ ЭЛЕМЕНТОВ ПЕРВЫХ УСКОРИТЕЛЕЙ

линдр 1, для принудительного центрирования на геодезическом знаке, подвижную часть (каретка) 2 и отсчетное устройство (микрометр) 3. Расположенные на каретке груз 4, нож 5 и шариковый упор для обоймы 6, которым оканчивается рулетка 7, образуют аналитические весы. При перемещении каретки упор удерживается рулеткой и остается неподвижным, а груз начинает приподниматься. Усилие, прикладываемое к каретке, передается на рулетку. Величина этого усилия пропорциональна высоте, на которую приподнялся груз или, что одно и то же, углу наклона рычага 8, на котором этот груз закреплен. Величина наклона рычага контролируется уровнем 9 с ценой деления 20″.

Рисунок 1.12 – Компоненты ВУДа

Если при измерениях перемещением каретки выводить уровень в нуль-пункт с точностью одного деления, то к рулетке будет приложено одинаковое усилие, точностью порядка 1 г. Величина перемещения каретки измеряется винтом микрометра 3. При одинаковой длине рулетки разность величин перемещения каретки, при измерении расстояний между пунктами для одного и того же отверстия, будет равна разности этих расстояний. При калибровке определяется, какому расстоянию соответствует отсчет «ноль» по микрометру ВУДа для рабочего отверстия. Поэтому, при измерении в тоннеле, для этого отверстия разность перемещения каретки равна отсчету по микрометру.

Натяжение проволоки (рулетки) производится вращением микрометренного винта, который одновременно является отсчетным. Он упирается опорным шариком в каретку ВУДа, толкает ее и заставляет приподниматься рычаг с грузиком. На винт в направлении его продольной оси прикладывается нагрузка в 10 (15) кг, что не корректно с метрологической точки зрения, так как применяемые микрометренные винты не приспособлены нести такую осевую нагрузку. Диапазон измерения винта равен 25 мм. Длина линии вычисляется по формуле [37, 66]

$$L = L_0 + (a - a_0) + \Delta t , \qquad (1.6)$$

где L_o – расстояние между посадочными цилиндрами при компарировании;

 a₀ – отсчет по микрометренному винту во время измерений;
 а – отсчет по микрометренному винту во время эталонирования прибора;

 Δt – поправка за температуру.

Рулетка представляет собой инварную ленту, сечением 8x0,4 мм. Вдоль продольной оси всей ленты пробиты точные отверстия диаметром 2 мм. Выбранным отверстием лента фиксируется на штифте вкладыша 10, также имеющего посадочный цилиндр для принудительного центрирования. По-

30

сле легкого натяжения в сторону ВУДа лента прижимается винтом через прокладку к телу вкладыша, и это разгружает при ее натяжении штифт и реперное отверстие.

Если соседние пункты расположены на разной высоте, то при измерении расстояния между ними высокоточным уровенным динамостатом усилие, прикладываемое к рычагу, будет содержать вертикальную составляющую, направление которой зависит от того, на каком из знаков установлен ВУД. Соответственно, горизонтальное усилие на мерное тело будет больше или меньше номинального (прикладываемого к мерному телу при калибровке), что дает ошибку в измерении. Чтобы устранить этот недостаток, расстояние измеряется в прямом и обратном направлении и затем вычисляется среднее значение.

Измерительные инварные жезлы.

Измерительный жезл представляет собой инварный стержень, на концах которого закреплены вкладыш и микрометр, рисунок 1.13. Торец мерного тела микрометра отполирован и расположен параллельно оси вкладыша, а мерное тело ми-

Рисунок 1.13 – Измерительные инварные жезлы

крометра – параллельно оси инварного стержня. Инвар выбран в качестве материала из-за низкого коэффициента линейного расширения, что практически исключает влияние температуры на результаты геодезических измерений.

С помощью инварных жезлов измеряют высоты в треугольниках и трапециях в опорных вытянутых сетях полигонометрии на ускорительных комплексах и производят установку оборудования в проектное положение.

Для измерений применяется нихромовая струна диаметром 0,2 мм и два стандартных вкладыша с фиксаторами струны. Перед работой с инварными жезлами требуется их метрологическая аттестация (компарирование). Аттестация выполняется при помощи лазерного интерферометра на компараторе ИЯФ СО РАН.

1.6 Геодезические работы при производстве и монтаже элементов структуры отечественных ускорительных комплексов.

Магнитная структура Серпуховского ускорителя У-70 с жесткой фокусировкой состоит из 12 суперпериодов, в каждом находится 6 стандартных и 4 укороченных последовательно расположенных фокусирующих и дефокусирующих электро-магнитов. В промежутках между электромагнитами располагаются ускоряющие секции, участки ввода-вывода и системы диагностики пучка.

Каждый С-образный электромагнит состоит из пяти блоков, рисунок 1.14. Блок состоит из листов кремнистой стали толщиной 2 мм. На верхнем и нижнем полюсах магнита установлена общая для пяти блоков обмотка. Между полюсами смонтирована вакуумная камера овального сечения 12 x 20 сантиметров. Вес электромагнита 200 т. 1.6 ГЕОДЕЗИЧЕСКИЕ РАБОТЫ ПРИ ПРОИЗВОДСТВЕ И МОНТАЖЕ ЭЛЕМЕНТОВ ______ СТРУКТУРЫ ОТЕЧЕСТВЕННЫХ УСКОРИТЕЛЬНЫХ КОМПЛЕКСОВ

Рисунок 1.14 – Монтаж электромагнитов в тоннеле ускорителя У-70

Подход к многоблочной схеме изготовления электромагнитов ускорителей был определен разбросом магнитных характеристик структуры ускорителя. Расположение блоков выбирали из критерия наименьшего возмущения на орбиту пучка.

Ускоритель расположен в тоннеле со средним радиусом 236 м. Сечение прямоугольного тоннеля имеет габариты 13 х 11,5 м. Фундамент – железобетонные опоры, соединенные между собой мостовыми балками. Каждая балка имеет юстировочные узлы. На балку установлен электромагнит.

На каждом блоке устанавливались два «орбитальных» геодезических знака. Крайние знаки на крайних блоках являются опорными для электромагнита [40].

Васютинским И. Ю. [1] описаны основные работы геодезического контроля при сборке крупномассогабаритных электромагнитов на стадии производства на мостовой балке: контроль установки взаимного положения пакетов электротехнической стали в блоке в поперечном горизонтальном и вертикальном направлениях оси пучка;

 контроль установки взаимного положения блоков электромагнита в поперечном горизонтальном и вертикальном направлениях оси пучка;

 контроль установки блоков в продольном направлении оси пучка;

- установка геодезических знаков;

 исполнительная съемка положения блоков электромагнита и геодезических знаков (паспортизация).

Магнитная структура Ереванского синхротрона включает в себя электромагниты, состоящие из двух частей – фокусирующей и дефокусирующей. Всего 48 электромагнитов с весом 16 т каждый.

Ускоритель размещался в специальном кольцевом здании с радиусом 34,5 м. Все электромагниты размещались на отдельных железобетонных фундаментах. Для юстировки элементов ускорителя в проектное положение имелись микрометренные регулировочные устройства.

Установка геодезических знаков на электромагнитах Ереванского синхротрона производилась после их сборки. Основное предназначение геодезических знаков – высокоточная установка на стенде магнитных измерений для определения поперечных и продольных поправок. Эти поправки в дальнейшем используются для корректировки положения электромагнитов при монтаже в здании ускорителя [96].

Каждый электромагнит коллайдера ВЭПП-4 состоит из двух частей: фокусирующей или дефокусирующей и радиусной части. Всего в двух полукольцах установлено 76 дипольных магнита. Каждый элемент структуры имел два геодезических знака в медианной плоскости орбиты пучка и фиксировал положение магнитной оси [33].

Тоннель представляет собой два полукольца с радиусом 45,5 м и две прямолинейные вставки – технического и экспериментального промежутков.

Проектами геодезического обеспечения занимался коллектив ученых МИИГАиК. Основой для монтажа элементов является специальная геодезическая сеть. Магнитная структура располагается над пунктами сети. Плановая установка в проект производится с помощью высокоточных центриров. Разработанный Новак В. Е центрир-высотомер позволял центрировать оборудование с погрешностью, не превышающей 0,025 мм. Установка элементов ускорителя по высоте осуществлялась методом высокоточного геометрического нивелирования с короткими визирными лучами. Погрешность определения высот на длине 10 м 0,03–0,05 мм [97].

Создание ускорительных комплексов в 60-70-х гг. ХХ в. показало высокий уровень научно-технического развития в СССР, в частности в области геодезического обеспечения строительства прецизионных сооружений. В период 1980-90 гг. в стране были создан сильнофокусирующий синхротрон Нуклотрон в Объединенном институте ядерных исследований (ОИЯИ) и модернизирован коллайдер ВЭПП-4. В результате экономического кризиса в стране и распада СССР было приостановлено создание комплекса УНК Института физики высоких энергий (ИФВЭ, г. Протвино).

Основные требования к проектируемым сетям ускорительных комплексов были сформулированы Лебедевым Н. Н.:

 конструкция знаков, точность определения координат и оперативность измерений должны решать все геодезические задачи на данном объекте; – знаки сети должны сохранять значения координат в течение значительного промежутка времени;

 – знаки и схема измерений должны иметь удобное расположение для производства геодезических работ;

- стоимость создания сети не должна быть высокой;

 временные затраты на математическую обработку сети должны быть минимальны.

В 2000-х гг. лазерные трекеры заменяют большинство старой инструментальной базы. Заметно сокращаются временные затраты на производство геодезических работ в периоды профилактических остановок комплексов.
2 общие приницы построения опорных геодезических сетей унк

2.1 Основные задачи специальных геодезических сетей УНК и их виды

Основной задачей специальной геодезической сети ускорительного комплекса (СГС УНК) является установка элементов магнитной структуры в проектное положение на этапе монтажа [16]. Точная взаимная установка критически важных элементов, таких как квадрупольные линзы, определяет успешный захват пучка частиц на начальном этапе эксплуатации комплекса. Установка элементов каналов транспортировки пучка из одного ускорителя в другой также невозможна без геодезической сети.

Специальная геодезическая сеть, являющаяся опорной для монтажа технологического и научного оборудования на промышленных площадках или объектах уникальных инженерных объектов, фиксирует систему координат и ориентирует проектные координаты относительно здания или цеха [23]. В производственных условиях часто возникают задачи проведения исполнительного контроля на соответствие проекту здания перед началом монтажа оборудования. Таким образом, проект специальной геодезической сети должен учитывать доступность и сохранность знаков на протяжении всего эксплуатационного периода объекта [10, 20, 21].

При строительстве циклических ускорителей больших периметров с установкой магнитной системы в подземном тоннеле используют многоступенчатую систему геодезического обоснования. В работе Лавриненко Е. Д. рассматривается разработка геодезического обеспечения при строительстве ускорительно-накопительного комплекса Института физики высоких энергий (УНК ИФВЭ) [12]. Этот ускоритель должен был стать самой крупной физической установкой для физики высоких энергий в стране, периметр построенного тоннеля – 21 км. На выбранной местности, перед строительством тоннеля ускорителя, создали наземную геодезическую сеть. Она является обоснованием первой ступени. Уникальность наземной сети УНК состоит в том, что она включает в себя 6 пунктов Лапласа, на которых были проведены измерения аномалий гравитационного поля [12]. Это было сделано для оценки влияния неоднородности гравитационного поля на орбиту пучка. Наземная сеть измеряется методом полигонометрии. Второй ступенью обоснования является подземная опорная сеть, которая также создавалась методом полигонометрии [3]. Погрешность определения координат пункта в самом слабом месте сети составила не более 25 мм.

Наземная плановая сеть самого большого электрон-позитронного коллайдера LEP (сейчас LHC – большой адронный коллайдер, г. Женева, Швейцария) состояла из 8 пунктов и 9 пунктов сети сгущения, рисунок 1.15 [105]. Методом трилатерации были многократно измерены 10-километровые длины сторон треугольников с помощью дальномера «Терраметр». СКП положения пунктов по 63 приемам составила 1,2 мм. Ходами высокоточного нивелирования были связаны все пункты сети вдоль проектируемой оси тоннеля. Общая протяженность ходов составила около 90 км, перепад высот 720 м. Невязка составила 2,1 мм [109]. Высокоточными работами на ускорителе LEP руководили такие специалисты, как Жервез Ж., Гартнер В., Хаблин М., Майод М. и др.

Передача координат с наземной сети на монтажный горизонт тоннеля является одной из ключевых инженерных задач строительства ускорительного комплекса. От точности передачи координат зависят сбойка тоннеля и отклонения оси тоннеля от проекта [13, 29, 32, 58].

Рисунок 1.15 – Плановая геодезическая сеть ускорителя LEP

При строительстве ускорительного центра CSNS – Китайский источник нейтронов в городе Дуангуань использовали новую схему передачи координат

с наземной сети в тоннель ускорительного комплекса. Над вертикальным технологическим проемом в тоннель ускорителя установливалась несущая металлоконструкция с юстируемой подставкой для фиксации спутникового оборудования, рисунок 1.16, *а*.

Площадку предварительно совмещали с геодезическим знаком в тоннеле с помощью прибора вертикального проек-

Рисунок 1.16 – Конструкция крепления спутникового оборудования для передачи координат с наземной сети в сеть ускорителя (а) и фиксатор антенны с посадочными метом под сферический отражатель лазерного трекера (б, в)

Рисунок 1.17 – Схема измерений при передаче координат лазерным трекером в сети ускорительного комплекса CSNS

тирования Wild NL. После этого устанавливали на подставку специально доработанный антенный фиксатор. Его особенность в том, что в нижней части располагается посадочное место для отражателя лазерного трекера, рисунок 1.16, *б*, *в*.

Соосность цетров антенны отражателя составила 0,05 мм. Схема измерений при передаче координат представлена на рисунке 1.17. Максимальная несоосность знаков на длине 30 м, составила 0,45 мм.

При установке в проектное положение элементов магнитной структуры ускорительных комплексов с использованием раздельных планово-высотных методов измерений широкое распространение получили центральные, радиально-кольцевые и кольцевые системы опорных геодезических сетей [24, 81].

В центральной геодезической сети все радиальные измерения производились от одного или двух знаков. Такие системы получили распространение для сравнительно небольших ускорителей [5]. В радиально-кольцевой сети измерения геодезических знаков производились в два этапа. С центрального знака по радиальным тоннелям определяли положения знаков в сети основного кольца. Измерения на остальные знаки производили методами полигонометрии или диагональными построениями.

Кольцевая геодезическая сеть получила наибольшее распространение, так как не требовала создания дополнительных тоннелей для диагональной связи знаков. После многочисленных исследований при работах на кольцевых сетях было выяснено, что на точность определения положения геодезических знаков по радиусу более значительно влияют погрешности угловых измерений, чем линейных. Поэтому большое распространение получил метод микротрилатерации, в котором использовалась схема измерений высот и сторон вытянутых треугольников [57]. Схематическая интерпретация систем геодезических сетей циклических ускорителей представлена на рисунке 1.18.

Отличительной особенностью специальных геодезических сетей для установки технологического оборудования в проектное положение является критерий определения качества сети. Определение ошибки положения геодезического знака в слабом месте сети не является решающим параметром. Для каждого научного и технологического оборудования определены геометрические требования, соблюдение которых обеспечивает его работоспособность. Для циклических и линейных ускорителей критическим значением на установку в проектное положение является поперечное положение последовательно расположенных магнитных элементов.

Требования на установку в проектное положение при монтаже и периодической юстировке оборудования в про-

Рисунок 1.18 – Виды геодезических сетей циклических ускорителей: а) центральная сеть, на примере накопительно-охладительного комплекса ИЯФ СО РАН, с измерениями радиусов с двух центральных геодезических знаков; б) радиально-кольцевая сеть Ереванского синхротрона; в) кольцевая сеть с измерениями высот и длин сторон вытянутых треугольников цессе эксплуатации отражается в проекте специальной геодезической сети [46, 47].

При монтаже контролируется положение геодезических знаков на элементах магнитной структуры, датчиках положения пучка и гирдерных модулях. Каждый из этих элементов проходит геометрический контроль при производстве. Паспортизация геодезических знаков в системе координат каждого элемента позволяет в дальнейшем произвести трансформацию из локальной системы элемента в общую систему координат установки. По геодезическим знакам производится контроль положения гирдерного модуля и элементов на нем или элемента на индивидуальной подставке, рисунок 1.19. В случае использования раздельных планововысотных методов измерений (например, микротрилатерация кольцевых сетей + коротколучевое нивелирование), при установке в проектное положение или на сглаживающую кривую необходимо контролировать также угловые смещения элементов ускорителя.

Рисунок 1.19 – Контролируемые шесть параметров (смещения вдоль X, Y, Z и вращения вокруг dX, dY, dZ осей системы координат) элемента оптической структуры ускорителя и гирдерного модуля в общей системе координат комплекса

При монтаже современных ускорительно-накопительных комплексов, где геодезический контроль проводят с применением лазерных трекеров, руководствуются допусками на поперечные и продольные смещения. Для установки физического оборудования в тоннеле с требуемыми допусками необходимо соблюдение влияния внешних условий при проведении измерений (термостабилизация помещения, отсутствие боковой рефракции и т. п.) [4, 22, 87, 88].

В официальных источниках отсутствует классификация специальных геодезических сетей. Конфигурация сети, схема измерений, количество знаков в сети, а также инструменты для производства измерений выбираются с учетом специфики монтируемого объекта, обеспечения его работоспособности. Кроме уменьшения производительности работ по времени, использование современных измерительных приборов позволило максимально упростить геодезические знаки как для специальной сети, так и для элементов магнитной системы. Например, используемый на геодезической сети ВЭПП-4М знак, который в свою очередь является уже упрощенной версией знака, разработанного Лебедевым Н. Н., весит около 15 кг. Кроме того, он имеет сложную клиновую систему установки центральной втулки для горизонтирования. Используемый в настоящее время знак весит менее 300 г и состоит из дюралевой детали, постоянного магнита для удерживания отражателя лазерного трекера и анкерных болтов для фиксации на поверхности стен тоннеля.

На основании анализа сетей современных источников СИ, периметр которых варьируется от 0,5 до 1,5 км, можно сформулировать требования при проектировании СГС УНК. Погрешность определения знаков в первичной сети не должна превышать ± 3 мм, плотность пунктов выбирается таким

образом, чтобы максимально охватить территорию будущего комплекса [75, 79].

Разработанная схема, отображающая двухступенчатый состав специальной геодезической сети и ее развитие на этапах монтажа и эксплуатации УНК, приведена на рисунке 1.20.

Стадия монтажа Первичная сеть – связь всех систем координат УНК Вторичная сеть первого этапа - ориентирует систему координат УНК в тоннеле; между знаками большие расстояния, чем между знаками сети второго этапа. Вторичная сеть второго этапа – достаточная плотность знаков для обеспечения монтажа оборудования УНК в соответствии с нормативными требованиями, включает в себя знаки сети первого этапа для определения деформаций сооружения. Стадия эксплуатации геодезический мониторинг оборудования Вторичная сеть -УНК периодическая юстировка.

Рисунок 1.20 – Схема развития геодезических сетей в жизненном цикле ускорительно-накопительного комплекса

Первичные геодезические сети ускорительных комплексов имеют ряд характерных особенностей [12]:

 – сети создаются в условной системе координат с привязкой к городской системе координат;

 – форма сети определяется обслуживаемой территорией и формой объектов, группы объектов;

– к пунктам сети предъявляются повышенные требования по стабильности положения в условиях их эксплуатации.

Проектирование наземного и подземного геодезического обоснования при строительстве тоннеля УНК и програм-

мы измерений должно проводиться для каждого отдельного случая строительства в зависимости от:

- конструктивных особенностей ускорителя;
- топографо-геодезической изученности района работ;
- геологических условий участка работ;
- наличия приборов и оборудования.

Погрешность определения знаков вторичной сети по результатам уравнивания должна составлять не хуже ± 0,07 мм (для сетей со средним периметром тоннеля около 400 м), плотность пунктов в тоннеле ускорителя 0,4–0,8 на погонный метр. Геодезические знаки должны быть надежно зафиксированы и доступны на весь период эксплуатации комплекса [110].

Вторичные опорные сети характеризуются:

- большой плотностью пунктов сети;

 – пункты сети стараются приблизить к устанавливаемому оборудованию;

 – форма сети обычно повторяет геометрическую форму сооружения в плане.

При построении вторичных опорных геодезических сетей кольцевых ускорителей важно учитывать особенности структуры конкретной магнитной системы – ее спектральную чувствительность. Т.е. проводить сравнительный анализ спектрального состава ошибок определения координат пунктов вторичной сети и спектральной чувствительности структуры ускорителя. Что позволяет еще на этапе проектирования определить наиболее оптимальный вариант построения вторичной геодезической сети.

В качестве примера создания опорных геодезических сетей современного ускорительного комплекса рассмотрим комплекс NSLS-II Брукхейвенской национальной лаборатории (США). Ускорительный комплекс NSLS-II включает в себя: источник излучения – накопительное кольцо электронных пучков периметром ~ 780 м, электронный синхротрон (бустер) периметром 158 м, первоначальный линейный ускоритель [71-73, 83]. Геодезическая сеть NSLS-II построена по принципу трех ступеней. Схема комплекса NSLS-II и его первичной опорной геодезической сети представлена на рисунке 1.21 [47].

Рисунок 1.21 – Схема первичной опорной геодезической сети комплекса NSLS-II

Вторичная опорная геодезическая сеть, от которой производится установка элементов бустера, включает в себя 36 напольных и 72 настенных знаков, расположенных по всему периметру. Вид сверху показан на рисунке 1.22.

Пространственное положение геодезических знаков вторичной сети бустера определяется измерениями лазерным

Рисунок 1.22 – Вторичная опорная геодезическая сеть бустера NSLS-II

Рисунок 1.23 – Схема измерений на станции лазерным трекером

трекером с 36 станций. Схема измерений на одной станции показана на рисунке 1.23. Главная особенность расположение знаков вторичной геодезической сети бустера заключается в том, что знаки размещены по всему объему сечения тоннеля кроме потолка. То есть это по сути линейно-угловая объемная геодезическая сеть. Такой вид сети в настоящее время характерен для всех ускорителей, где для геодезического сопровождения монтажа и юстировки применяются лазерные трекеры.

Структура геодезической сети источника СИ ESRF (Европейский Синхротронный Центр, Франция, Гренобль) соответствует вышеописанной схеме. Первичная сеть закреплена по периметру территории центра и вдоль дорог бетонными столбами, на оголовке которых вмонтированы столики принудительного центрирования для геодезических приборов. Плановое положение знаков определяется с помощью спут-

Рисунок 1.24 – Первичная сеть Европейского синхротронного центра и геодезический знак

никового оборудования, а высотное – цифровыми нивелирами. Первичная сеть источника СИ ESRF представлена на рисунке 1.24.

Вторичная геодезическая сеть основного кольца для установки в проектное положение элементов структуры закреплена 463 знаками для сферического отражателя лазерного трекера в тоннеле ускорителя. Сеть здания обеспечивает монтаж выводов синхротронного излучения до пользовательских станций (beam line), рисунок 1.25.

Схема сети измерений лазерным трекером усложняется отсутствием широких проемов для передачи координат от

Рисунок 1.25 – Вторичная геодезическая сеть источника СИ ESRF: 1 – сеть здания основного кольца EX2; 2 – сеть в тоннеле ускорителя (пункты выделены синим цветом); 3 – эллипс погрешностей определения знаков сети с величиной полуосей, в мкм;

4 – связь сети тоннеля источника СИ и сети здания EX2

сети тоннеля к сети здания EX2. Каждый измеренный в зале знак со станции лазерного трекера внутри тоннеля измеряется также многократно со станций, расположенных над защищенным тоннелем.

Перед началом монтажа элементов на гирдере или индивидуальных подставках необходимо определить места их крепления в помещении или тоннеле ускорительного комплекса. Для этого, после создания СГС УНК, выносят линию, являющуюся проекцией оси пучка на полу тоннеля.

Эта линия является основой для установки гирдерных модулей, а также используется другими инженерными службами (ориентировка при прокладке кабельных трасс, труб подачи дистиллята и т. д.). Точность нанесения этой линии составляет около ± 5 мм. Например, для бустера источника СИ NSLS-II, от линии с помощью специальных шаблонов размечались места установки и фиксации к полу опорных конструкций гирдера. После на них устанавливался сам гирдер с элементами структуры, рисунок 1.26.

В соответствии с каталогом координат гирдер устанавливают в проектное положение. Предварительная установка

Рисунок 1.26 – Установленные опорные конструкции гирдера относительно вынесенной линии оси

гирдерных модулей, как правило, ограничивается погрешностью установки в проект ± 0,1 мм. После монтажа всего оборудования в тоннеле производится финальная юстировка, где контролируют взаимное положение модулей.

В период эксплуатации ускорительного комплекса геометрическое положение структуры изменяется под действиями сезонных деформаций и других факторов [35, 41]. Изза крупных размеров сооружения и большого количества оборудования оказалось нецелесообразно производить периодическую юстировку к проектным значениям. При геодезическом мониторинге определяют положение всех геодезических знаков на элементах в системе координат комплекса и при обработке результатов строят сглаживающую кривую, ее описание дано в 1.4.

С 1993 г. в ESRF для контроля высотных смещений в режиме реального времени используется система гидростатического нивелирования. Уровненная поверхность этой системы является базовой. На каждом гирдере установлено по четыре датчика, фиксирующих изменения уровненной поверхности с СКП 1,7 мкм. Показания всех датчиков анализируются специальным программным обеспечением на ЭВМ в пультовой ускорительного комплекса.

Через систему обратной связи производят вертикальную юстировку гирдеров, если датчики зафиксировали смещение. Несмотря на многочисленные сложности в эксплуатации этой системы, геодезическая группа ESRF добилась ее стабильной работы, что позволило сократить сроки работ во время остановки комплекса.

Строительство крупных научных (mega-science) проектов иногда осуществляется на площадках, уже отработавших свой ресурс комплексов [2, 45]. При этом возникает проблема отсутствия проектных чертежей зданий и расположения в них функционирующих комплексов, что замедляет процесс проектирования новой установки.

Канал транспортировки Бустер-Нуклотрон, являющийся частью ускорительного комплекса NICA (Объединенный институт ядерных исследований, г. Дубна), служит для перевода пучка с минимальными потерями из Бустера в кольцо Нуклотрона. Канал имеет сложную пространственную геометрию, в значительной степени определяемую взаимным положением Бустера и Нуклотрона. Синхротроны имеют различные радиусы, и их медианные плоскости разнесены по вертикали на 3,76 м. Суммарная длина канала составляет 23,1 м [84]. Геодезической группой ИЯФ СО РАН была выполнена работа по созданию опорной геодезической сети и трехмерной модели участка перепускного канала [67].

В период с 16 по 21 октября 2016 г. была произведена геодезическая съемка в зале синхрофазотрона и тоннеле Нуклотрона. Съемка производилась лазерным трекером Leica AT 401. Для связи всего участка канала Бустер-Нуклотрон была создана опорная геодезическая сеть, которая состоит из 21 знака. Произведенная съемка была связана с системой координат Бустера через четыре знака на третьем прямолинейном промежутке.

Обработка данных измерений и построение 3D-модели производились в программном обеспечении Spatial Analyzer. Вся модель построена из множества плоскостей, построенных по методу наименьших квадратов, рисунок 1.27.

Каждая плоскость преобразована в поверхность для дальнейшего экспорта в САД-программы. В таблице 1.4 отображены погрешности измерений при создании модели канала перепуска.

Созданная геодезическая сеть позволила спроектировать перепускной канал с учетом реальных габаритов элементов

здания Синхрофазотрона, уточнить разницу медианных плоскостей Бустера и Нуклотрона, задать места вскрытия бетонных перекрытий для установки опор электромагнитов канала. От этой сети также будет производиться установка в проектное положение всех элементов канала.

Рисунок 1.27 – Трехмерная модель области проектируемого канала транспортировки Бустер-Нуклотрон

110/11/1/11				
Наименование измерений	Величина СКП, мм			
Связь съемки и СК бустера	0,3			
СКП опорной сети канала Бустер-Нуклотрон	0,04			
Бетонные конструкции	50			
Ярмо Синхрофазатрона	3			
Оси криостатов Нуклотрона	0,1			

2.2 Методика комплексного подхода к геодезическому обеспечению жизненного цикла УНК

Анализ опыта создания ускорительных комплексов дает понимание о необходимости применения комплексного подхода к геодезическому обеспечению этого процесса, так как

Ταδπιμια 1 Λ

нарушение технологической преемственности от этапа к этапу в создании УНК создает необоснованные трудозатраты и соответственно требует дополнительных ресурсов для восстановления той или иной достоверной технической информации.

При создании современных УНК имеется два взаимосвязанных процесса:

- создание физического оборудования;

 – строительство сооружений для размещения физического оборудования.

Эти процессы имеют свои этапы реализации. Для соблюдения требуемых геометрических параметров и эффективного взаимодействия процессов для каждого этапа требуется создать необходимую и достаточную геодезическую состав-

Рисунок 1.28 - Структурная схема геодезического обеспечения этапов создания УНК с учётом технологических связей

ляющую. А также выявить технологические связи и определить порядок взаимодействия. Схема геодезического обеспечения этапов создания УНК с учётом технологических связей представлена на рисунке 1.28.

Процессы реализуются в единой для всех составных частей УНК системе координат. Геодезическое обеспечение стадий создания УНК формируется на основе анализа исходных данных и принятых технических решений. Их состав представлен в таблице 1.1.

Таблица 1.	1
------------	---

Ста-	Исходные	Технические	Геодезическая
дии	данные	решения	составляющая
Проектирование	 Каталог координат узловых точек орби- ты пучка. Технические харак- теристики магнит- ных элементов. Спектральная чувствительность магнитной структу- ры ускорителя. 	 Количество и габариты моду- лей. Рабочие диапазоны и конструкция юстировочных узлов магнит- ных элементов и модулей. Конструкция гирдеров мо- дулей адапти- рованная для геодезического контроля. 	 Оптимизация количества и рас- положения геоде- зических знаков на элементах. Моделирование опорной геодезиче- ской сети для опти- мизации по спек- тральному составу ошибок определения координат.

2.2 МЕТОДИКА КОМПЛЕКСНОГО ПОДХОДА К ГЕОДЕЗИЧЕСКОМУ ______ ОБЕСПЕЧЕНИЮ ЖИЗНЕННОГО ЦИКЛА УНК

Ста-	Исходные	Технические	Геодезическая
дии	данные	решения	составляющая
Изготовление	1 Точности, заложен- ные в техническом задании. 2 Каталог координат узловых точек орби- ты пучка.	1 Конструкция стапелей и каре- ток для магнит- ных измерений адаптированная для геодезиче- ского контроля.	 Создание опорных сетей стапелей. Определение взаимного положения геодезических знаков и узловых точек магнитной оси элементов. Создание каталога координат геодезических ческих знаков магнитных элементов. Геодезический контроль изготовления гирдеров модулей.
Монтаж	 Каталог координат геодезических знаков магнитных элемен- тов. Проект размеще- ния и компоновки физического обо- рудования в тоннеле ускорителя. 	1 Количество и расположение геодезических знаков опорной сети в тоннеле ускорителя. 2 Технология сборки модулей.	 Создание опорной геодезической сети в тоннеле ускорителя. Геодезическое обеспечение сборки модулей. Геодезическое обе- спечение монтажа модулей в тоннеле.
Эксплуагация	 Каталог координат геодезических знаков магнитных элемен- тов. Каталог координат геодезических знаков опорной сети в тон- неле ускорителя. Реальные условия и компоновка радиа- ционной защиты. 	1 Оптимизация схем измерений в геодезической опорной сети.	1 Геодезический мониторинг. 2 Юстировка маг- нитных элементов ускорителя.

Таким образом, в создании современных ускорительно– накопительных комплексов можно выделить две главные тенденци;

 – строительство ускорителей заряженных частиц, путем модернизации, уже действующих с объединением в единый копмлекс с вновь, строящимися установками;

– строительство источников синхротронного излучения
 4–го и последующих поколений с «нуля».

При реализации каждого из указанных, вариантов в задачи геодезического обеспечения должен быть положен комплексный подход и заложены в конструкции специальных геодезических сетей возможности оказания помощи при ремонте, реконструкции монтаже существующего технологического оборудования и его последующего обновления на перспективный срок эксплуатации. Необходимо предусмотреть эффективное применение лазерных трекеров уже на этапе проективания, для успешной эксплуатации и геопространственного мониторига уникального физического оборудования, тоннеля и инженерных сооружения УНК.

З лазерные трекеры – основные технические средства геодезического обеспечения современных ускорительно-накопительных комплексов

3.1 Лазерный трекер API Laser Tracker

API Laser Tracker – высокотехнологичный, высокоточный измерительный прибор, основанный на принципе слежения за специальным уголковым отражателем с помощью лазерного луча, рисунок 2.1 [73]. При попадании лазерного луча, испускаемого прибором, в центр уголкового отражателя, он возвращается обратно в объектив прибора, а далее – на приемный датчик дальномера [39]. С учетом двух углов и расстояния вычисляются текущие пространственные координаты отражателя. Координаты можно получать как в статическом режиме, так и в динамике. API Laser Tracker оснащен двумя типами дальномеров: интерферометром и абсолютным дальномером. Их основное отличие состоит в том, что абсолютный дальномер измеряет абсолютное расстояние между отражателем и прибором, а интерферометр, в свою очередь измеряет изменение расстояния от некого базового значения. На неподвижной части прибора закреплено посадочное место под отражатель «домашняя точка» (англ. Ноте position). Во время инициализации прибор начинает работу с «домашней точки». Так же она задает направление оси Х системы координат трекера.

З ЛАЗЕРНЫЕ ТРЕКЕРЫ – ОСНОВНЫЕ ТЕХНИЧЕСКИЕ СРЕДСТВА ГЕОДЕЗИЧЕСКОГО ОБЕСПЕЧЕНИЯ СОВРЕМЕННЫХ УСКОРИТЕЛЬНО-НАКОПИТЕЛЬНЫХ КОМПЛЕКСО<u>В</u>

Рисунок 2.1 – Общий вид API Laser Tracker 3

Технические характеристики [74]:

максимальная скорость бокового смещения объекта:
 > 3,0 м/с (120"/sec);

- максимальное ускорение во всех направлениях: > 2 g;
- измерительный диапазон по горизонтали: 640° (± 320°);
- измерительный диапозон по вертикали: + 80° до 60°;
- диаметр измерения. (IFM и ADM): > 120 м;
- угловое разрешение: ± 0,07 арк-секунд;
- точность внутреннего уровня: ± 2 арк-секунд.

Точность объемных измерений:

- разрешение: 1 мкм;

- повторяемость: 2,5 ppm (2 sigma).

Абсолютная погрешность определения 3-мерных координат:

- статическая: ± 5 ppm (2 sigma) (25 µm) на 5 м;

– динамическая: ± 10 ppm (2 sigma) (50 µm) на 5 м.

Характеристики лазерного интерферометра по дальности:

- разрешение 1 мкм;

– точность лучше чем 1,0 ppm.

Характеристики дальномера ADM:

- разрешение: 1 мкм;

– точность: ± 15 мкм; ± 0,0006" (15 мкм) на 5 м; ± 0,0012" (30 мкм) на 20 м.

Условия окружающей среды:

– температура воздуха от минус 10 °C до > 40 °C;

- барометрическое давление 580 мм рт. ст. - 800 мм рт.ст.;

- относительная влажность 10-92,5 % без конденсата;

- высота 2000 м.

Физические характеристики:

- вес головки трекера: 8,5 кг;

- вес контроллера: 3,2 кг;

- вес всего комплекта: 23 кг.

3.2 Координатно-измерительная система фирмы Leica. Лазерный трекер АТ 403

Лазерный трекер AT 403 является моделью из серии мобильных координатно-измерительных систем Leica, рисунок 2.2. В отличии от API не имеет «домашней точки», инициализация происходит на отражатель установленный в 3 метрах от инструмента.

Рисунок 2.2 – Общий вид Leica AT 403

З ЛАЗЕРНЫЕ ТРЕКЕРЫ – ОСНОВНЫЕ ТЕХНИЧЕСКИЕ СРЕДСТВА ГЕОДЕЗИЧЕСКОГО ОБЕСПЕЧЕНИЯ СОВРЕМЕННЫХ УСКОРИТЕЛЬНО-НАКОПИТЕЛЬНЫХ КОМПЛЕКСО<u>В</u>

Технические характеристики [62]:

- Точность измерения абсолютной дальности: ± 10 мкм;

- Точность измерения абсолютного угла (включая ориентацию по силе тяжести): ± 15 мкм + 6 мкм/м;

- Защита от пыли и влаги: IP54;

- Рабочая температура: от - 15 °С до + 45 °С;

- Относительная влажность: не более 95% (без образования конденсата);

- Типовой объем измерения с отражателем (Ø) 320 м;

- Минимальное расстояние при измерении расстояния с отражателем: < 0,8 м;

- Встроенное Литий-ионный аккумулятор со стандартным временем работы: 8 часов.

3.3 Точность определения координат лазерным трекером (специфика использования на ускорителях)

При эксплуатации лазерных трекеров необходимо учитывать особенности их применения как с точки зрения принципа измерения, так и конструктивных решений в конкретной модели трекера. Отсутствие возможности центрирования прибора на геодезическом пункте не позволяет реализовывать традиционные схемы измерений. Методом определения координат при измерениях лазерным трекером является полярный метод – пространственная полярная засечка. При этом измеряются горизонтальные β , вертикальные ν углы и наклонные расстояния *S* до отражателя, установленного на поверхности объекта.

Координаты центра отражателя:

$$X_{omp} = S\cos\nu\cos\beta; \qquad (2.1)$$

$$Y_{omp} = S\cos\nu\sin\beta; \qquad (2.2)$$

$$Z_{omp} = S\sin\nu; \qquad (2.3)$$

Погрешности определения координат центра отражателя:

$$m_{X_{omp}} = \sqrt{\left(\cos \nu \cos \beta\right)^2 {m_S}^2 + \left(S \cos \nu \sin \beta\right)^2 \left(\frac{m_{\beta}}{\rho}\right)^2 + \left(S \sin \nu \cos \beta\right)^2 \left(\frac{m_{\nu}}{\rho}\right)^2}; \quad (2.4)$$

$$m_{\gamma_{omp}} = \sqrt{(\cos\nu\sin\beta)^2 m_s^2 + (S\cos\nu\cos\beta)^2 \left(\frac{m_\beta}{\rho}\right)^2 + (S\sin\nu\sin\beta)^2 \left(\frac{m_\nu}{\rho}\right)^2}; \quad (2.5)$$

$$m_{Z_{omp}} = \sqrt{(\sin \nu)^2 m_S^2 + (S \cos \nu)^2 \left(\frac{m_\nu}{\rho}\right)^2}, \qquad (2.6)$$

где m_s , m_{β} , m_{ν} соответственно, погрешности определения наклонного расстояния, горизонтального угла и вертикального угла.

В большинстве измерительных систем, реализующих полярный метод, точность измерения расстояний (погрешность вдоль визирного луча) и угла (погрешность поперек визирного луча) различна. Выбирая наиболее рациональное расположение прибора относительно обмеряемого объекта, необходимо анализировать множество факторов: требование к точности, реальные условия измерений и особенности конструкции объекта.

3.4 Влияние продолжительности внутренней термостабилизации прибора на точность измерений

Лазерный трекер, как и любой электронный прибор имеет внутри части подверженные нагреву. Нагрев в свою очередь может приводить к деформациям составных частей и корпуса прибора. Исследования в данной области являются актуальными. Зарубежные ученые геодезисты выполнили ряд исследований для трекеров FARO и Leica [71,82, 93, 96].

Проведено исследование в определении влияния времени прогрева API Laser Tracker 3 на точность геодезических измерений. Лазерный трекер был установлен на геодезический знак компаратора ИЯФ СО РАН. Геодезический знак для которого определялись координаты, находится на расстоянии 19,647 м от трекера. В течении четырех с половиной часов, с периодичностью одна минута, проводилось определение координат геодезического знака относительно трекера. Во время одного измерения прибор выполнял 50 отсчетов впоследствии вычислял среднее арифметическое значение.

$$X_{\text{H3M}} = \frac{\sum (\cos\alpha * \sin\beta * S)}{50},$$
 (2.7)

$$Y_{\rm H3M} = \frac{\sum (sin\alpha * \sin \beta * S)}{50},$$
 (2.8)

$$Z_{\rm M3M} = \frac{\sum (\cos\beta * S)}{50} \,. \tag{2.9}$$

Средняя квадратическая погрешность одного измерения для расстояния 19,642 м составило 0,037 мм и вычислялось по формулам:

$$\sigma = \sqrt{\frac{\sum (((\cos\alpha * \sin\beta * S)_i - X_{\text{N3M}})^2 + ((\sin\alpha * \sin\beta * S)_i - Y_{\text{N3M}})^2 + ((\cos\beta * S)_i - Z_{\text{N3M}})^2)}{50}}$$
(2.10)

При проведении измерений в помещении отсутствовали люди, прибор работал в автоматическом режиме. Температура за весь промежуток времени оставалась постоянной. Для того чтобы избежать вертикального температурного градиента свет в помещении был выключен. Всего сделано семь циклов измерений. Типичный результат измерений представлен на рисунках 2.3, 2.4, 2.5 в локальной системе коор-64 динат, где ось X параллельна направлению на измеряемый геодезический знак.

Анализ графика на рисунке 2.3 показал, что изменение координаты X измеряемого геодезического знака составляет около 0,06 мм для расстояния 19,642 м. Ось X параллельна направлению луча лазера API Laser Tracker 3. Виден резкий скачок на первых 15 минутах после прогрева.

Рисунок 2.3 – Изменение координаты Х

Рисунок 2.4 – Изменение координаты Ү

Изменение положения определяемого геодезического знака по оси Y соответствует изменению положения горизонтального круга API Laser Tracker 3, рисунок 2.3. Так же как и на графике рисунка 2.4 виден резкий скачок на первых 15 минутах, но его величина больше почти на порядок. После 15 минут измерений положение определяемого геодезического знака изменяется в пределах 0,08–0,09 мм за четыре с половиной часа.

График на рисунке 2.5 показывает изменение положения вертикального круга API Laser Tracker 3. Так же отмечается скачок на первых 15 минутах работы, затем следует плавное увеличение высоты определяемого геодезического знака на величину 0,8 мм.

Рисунок 2.5 – Изменение координаты Z

Изменение положения определяемого геодезического знака по показаниям прибора, возможно, объясняется постепенным прогревом основания прибора. Было выполнено дополнительное исследование в котором API Laser Tracker 3 автоматически определял координаты трех геодезических знаков в течении шести часов. Взаимное положение трех точек оставалось неизменным, при этом высота самого дальнего от трекера знака по показаниям прибора изменилась на 0,7 мм и совпала с приведенным графиком на рисунке 2.5. Это дает основание рассматривать данное изменение как перемещение системы координат прибора вызванной тепловой деформацией корпуса. Стоит отметить, что изменение координаты Z после 5 часов прогрева становится пренебрежительно мало. Результаты измерений проведенных АРІ Laser Tracker 3 показывают, что для корректной работы после стандартного прогрева требуется выдерживать минимум 15-20 минут только после этого начинать калибровки и измерения. В противном случае все выполненные калибровки приходятся на временной интервал, когда происходит скачок приведенный, на графиках, что не дает уверенности в точности последующих измерений [22]. Целесообразно высокоточные работы выполнять в короткий промежуток времени, делать контрольные измерения на опорные геодезические знаки, при необходимости производить повторные привязки к опорной геодезической сети.

3.5 Исследование точности линейных измерений API Laser Tracker 3

АРІ Laser Tracker 3 оснащен двумя типами дальномеров: интерферометром (IFM) и абсолютным дальномером (ADM). Их основное отличие состоит в том, что ADM измеряет абсолютное расстояние между отражателем и прибором. IFM в свою очередь измеряет изменение расстояния от некого базового значения. Была проведена серия измерений на компараторе ИЯФ СО РАН для определения относительной точности API Laser Tracker 3. В качестве эталона взят интерферометр Hewlett-Packard 5529A, рисунок 2.6. Технические характеристики[23, 70]: З ЛАЗЕРНЫЕ ТРЕКЕРЫ – ОСНОВНЫЕ ТЕХНИЧЕСКИЕ СРЕДСТВА ГЕОДЕЗИЧЕСКОГО ОБЕСПЕЧЕНИЯ СОВРЕМЕННЫХ УСКОРИТЕЛЬНО-НАКОПИТЕЛЬНЫХ КОМПЛЕКСО<u>В</u>

- предел измеряемой длины S=80 м;
- дискретность отсчета 0,1 (0,01) мкм;
- относительная погрешность измерений 0,5•S мкм;
- допустимая скорость перемещения 18 м/мин.

Рисунок 2.6 – Интерферометр Hewlett-Packard 5529A

Рисунок 2.7 – Схема расположения оборудования на компараторе ИЯФ СО РАН

Для совместных измерений длин линий, API Laser Tracker 3 установили на противоположном конце направляющей компаратора в створ с интерферометром HP 5529A, рисунок 2.7.

Для выполнения исследований была модернизирована каретка интерферометра. На ней, с обратной стороны от призмы интерферометра, установлен отражатель трекера, рисунок 2.8. Каретка с двумя отражателями позволяла выполнять измерения лазерным трекером и интерферометром одновременно.

Рисунок 2.8 – Каретка с двумя отражателями

Выполнено несколько циклов измерений: в режиме IFM на длину ~ 25 м с шагом 3 м, в режиме ADM: на длину ~ 25 м с шагом 3 м; на длину 10 м с шагом 0,5 м; на длину ~ 25 м с шагом 0,5 м [26].

Каретка с отражателями перемещалась по команде оператора с помощью электропривода, размещенного на ней. Измерения выполнялись одновременно двумя приборами после остановки каретки. Для координирования положения каретки API Laser Tracker 3 выполнял от 50 до 100 отсчетов при каждой остановки каретки, показания по интерферометру записывались вручную. Для контроля в нескольких циклах делался обратный ход каретки, при котором так же выполнялось координирование ее положения. За начало отсчета брались координаты положения каретки, ближайшие к API Laser Tracker 3. Расстояния для API Laser Tracker 3 вычислялись по формуле

$$S_{API} = \sqrt{ (((\cos\alpha * \sin\beta * S)_0 - (\cos\alpha * \sin\beta * S)_n)^2 + ((\sin\alpha * \sin\beta * S)_0 - (\sin\alpha * \sin\beta * S)_n)^2 + .(2.11) + ((\cos\beta * S)_0 - (\cos\beta * S)_n)^2) }$$

Для интерферометра НР 5529А начальное положение каретки было взято за ноль и дальнейшее вычисление расстояний производилось по формуле

$$S_{HP} = X_0 - X_n \,. \tag{2.12}$$

На рисунке 2.9 представлены разницы длин линий, полученных лазерным трекером и интерферометром НР.

$$\Delta = S_{HP} - S_{API} . \qquad (2.13)$$

Во время проведения измерений API Laser Tracker 3 работал в режиме интерферометра.

Первое и последнее измерение произведено в 2,5 м от трекера. Не замыкание прямого и обратного хода составило 4 мкм, величина, удовлетворяющая паспортным требованиям прибора на этом расстоянии. На расстоянии 24 м. максимальная разница с интерферометром составила 16 мкм, что так же хорошо укладывается в заявленные характеристики производителя. Следует отметить, что все измерения производились в не термостатированном помещении. Перепад температур на длине направляющей компаратора достигал 1,5 °C. Так же добиться точной установки измеряющей головки трекера в створ с интерферометром НР является сложной задачей. Поэтому, в измерения включены, пусть и не значительные измерения угломеров прибора, влияющие на общую точность полученных данных.

Рисунок 2.9 – Разность расстояний, измеренных API Laser Tracker 3, в режиме IFM с интерферометром HP

Рисунок 2.10 – Разность расстояний, измеренных API Laser Tracker 3, в режиме ADM с интерферометром HP

Сравнение ADM режима с интерферометром является наиболее важной этапом исследования, так как большинство измерений производится в этом режиме. Измерения производились для расстояний 10 и 24 м. На рисунке 2.10 показана разность измеренных расстояний API Laser Tracker 3 в режиме ADM с интерферометром HP для расстояния 24 м.

Полученные данные укладываются в погрешности абсолютного дальномера, указанные в паспорте прибора. Так на 24 м разница с интерферометром составила около 22 мкм, при допустимых 30 мкм.

На основе произведенных измерений можно сделать вывод: интерферометр и абсолютный дальномер API Laser Tracker 3 соответствуют паспортным характеристикам производителя. Измерения предпочтительнее производить в режиме IFM для достижения лучшей точности.

Исследование точности линейных измерений при работе в двух режимах.

Для исследований API Laser Tracker 3 был установлен на штативе в створ с интерферометром, но на разной высоте.

Рисунок 2.11 – Разность расстояний измеренных API Laser Tracker 3 в двух режимах с интерферометром HP 5529A
На перемещающуюся каретку закреплено два отражателя (по одному для каждого из приборов). Каретка перемещалась при помощи электродвигателя, при остановке, одновременно снимались показания по двум приборам. При одном измерении API Laser Tracker 3 выполнял 50 отсчетов. Вычислялось среднее значение Сделано по 15 измерений в двух режимах работы API Tracker'а (IFM, ADM).Расстояние между остановками каретки около 1 м. Пройдено расстояние примерно 14 м. Результат исследований представлен на рисунке 2.11.

Разность расстояний между интерферометром и API Laser Tracker 3 в режиме интерферометра составляет 0,006 мм, в режиме абсолютного дальномера 0,007 мм для расстояния в 14 м. Это соответствует техническим характеристикам прибора.

Исследование точности линейных измерений в ADM режиме с прерыванием луча.

Большинство измерений выполняемых при помощи лазерного трекера проходят в режиме ADM. Это означает, что лазерный луч многократно прерывается. Для проверки повторяемости измерений было выполнено соответствующее исследование.

Прибор установлен на тумбе компаратора. Определяются координаты геодезического знака на расстоянии 3,7 м. Прибор работает в режиме ADM. Измерения выполнялись при двух кругах. При одном измерении брали 100 отсчетов. Затем луч прерывали. Отражателем находили луч снова. Проводили следующее измерение. Выполнено десять измерений.

Результаты геодезических измерений:

$$\sigma X = 0,012$$
 mm;
 $\sigma Y = 0,019$ mm;
 $\sigma Z = 0,014$ mm.

Такое же количество измерений в тех же условиях выполнено для расстояния 13,2 м. Результаты:

> $\sigma X = 0,054$ mm; $\sigma Y = 0,035$ mm; $\sigma Z = 0,034$ mm.

3.6 Исследование работы внутреннего электронного уровня API Laser Tracker 3

Согласно приведенным техническим характеристикам, точность горизонтирования прибора по внутреннему электронному уровню составляет $\pm 2^{"}$. Электронный уровень работает в диапазоне $\pm 1^{\circ}$. При выполнении работ с помощью API Laser Tracker 3 на комплексах ИЯФ СО РАН была замечена ошибка определения превышений между измеренными точками с разных станций прибора [24, 25]. Эта ошибка никак не укладывалась в величину $\pm 2^{"}$. Чувствительности уровня, закрепленного на штативе, оказалась недостаточно, хотя он обеспечивал необходимую работу электронного уровня (компенсатора), диапазон которого контролируется программно.

Для определения величины этой ошибки был поставлен следующий эксперимент. API Laser Tracker 3, был установлен на экзаменатор, который в свою очередь, установили на жестком основание, между двумя геодезическими знаками, закрепленными на компараторе ИЯФ.

Экзаменатор – представляет собой поверочную плиту, имеющая три точки опоры, с возможностью изменения горизонта $\pm 1^{\circ}$.

Геодезические знаки конструкции Лебедева Н. Н. и усовершенствованные в ИЯФ СО РАН представляют собой шлифованную площадку с дюймовым отверстием, выпол3.6 ИССЛЕДОВАНИЕ РАБОТЫ ВНУТРЕННЕГО ЭЛЕКТРОННОГО УРОВНЯ API LASER TRACKER 3

ненным с точностью + 0.009 мм, рисунок 2.12. Знаки закреплены на бетонных колоннах, не связанных со зданием.

Рисунок 2.12 – Геодезический знак

Для модернизации прибора была изготовлена специальная площадка с прижимными и юстировочными винтами. В ней поместили уровень с ценой деления 6' и закреплен в ручке API Laser Tracker 3 на оси вращения горизонтального круга, рисунок 2.13.

Рисунок 2.13 – Изготовленный уровень на корпусе прибора

Методика поверки: экзаменатор установлен параллельно измеряемой линии. Угол наклона экзаменатора измеряется при помощи оптического квадранта (точность измерения 30"). На компараторе установлены два знака на расстоянии 16,5 м друг от друга. API Laser Tracker 3 расположен на экзаменаторе между ними. «Домашняя точка» API Laser Tracker 3 направлена перпендикулярно измеряемой линии, соответственно ось X системы координат, приведенного к уровню API Laser Tracker 3, перпендикулярна измеряемой линии. Был проверен диапазон наклона оси Y на $\pm 1^{\circ}$ с шагом 5', при этом ось X была горизонтальна, установлена по уровню, закрепленному на оси вращения API Laser Tracker 3. Наклон осуществлялся только по одной оси.

Перед измерением были выполнены все необходимые поверки API Laser Tracker 3.

В начале измерений API Laser Tracker 3 установлен на экзаменаторе под углом - 60′, приведен к электронному уровню, выполнено измерение контрольных точек (трижды), вычислено превышение. Далее угол наклона экзаменатора

Рисунок 2.14 – График величины ошибки измерения превышений API Laser Tracker 3 с наклоном экзаменатора по оси X

изменялся на 5', прибор приводился к электронному уровню, повторялось измерение (трижды). Был пройден диапазон от минус 60' до плюс 60'. Результат представлен на графике рисунка 2.14. Среднее квадратическое отклонение от трендовой прямой 0,038 мм. Превышение между контрольными точками 0,125 мм измерено при помощи нивелира Ni 007, вычтено из превышений, измеренных API Laser Tracker 3.

Выполнен повторный цикл измерений с повторным включением и инициализацией инструмента. «Домашняя точка» была развернута на 90°. Результат представлен на графике рисунка 2.15. Среднее квадратическое отклонение от трендовой прямой 0,035 мм. Превышение между контрольными точками 0,151 мм измерено при помощи нивелира Ni 007, также вычтено из превышений, измеренных API Laser Tracker 3.

Рисунок 2.15 – График величины ошибки измерения превышений API Laser Tracker 3 при наклоне экзаменатора по оси Y

Средняя квадратическая погрешномть взятия отсчета API Laser Tracker 3 составила 0,011 мм.

Анализ результатов исследований представленных на графиках показал, что прибор имеет систематическую ошибку по внутреннему электронному уровню (компенсатору) порядка 9"-10" по обеим осям. Это оказалось больше заявленной точности почти в пять раз.

После проведения исследований разработчик прибора (американская фирма API) был поставлен в известность. С их стороны предпринято несколько попыток исправить ситуацию. В конечном итоге выяснилось, что данная ошибка присутствует во всех приборах этой серии. Исправить ее производитель не смог. Из инструкции прибора была убрана информация о диапазоне работы внутреннего электронного уровня.

Сотрудники института ядерной физики СО РАН предприняли усилия для исправления данной ситуации. Исследована точность постановки прибора по изготовленному уровню, размещенному в ручке API Laser Tracker 3. Исследование проводилось следующим образом. С помощью экзаменатора API Laser Tracker 3 был установлен по уровню, закрепленному в ручке прибора. Затем API Laser Tracker 3 устанавливался по внутреннему электронному уровню, производилось измерение контрольных точек (трижды), после этого API Laser Tracker 3 случайным образом наклоняется, и процедура установки и измерения повторялась. Было выполнено по 10 повторных установок прибора для трех разных расстояний:

для расстояния 4,137 м, σ = 0,009 мм;

для расстояния 14,875 м, σ = 0,037 мм;

для расстояния 24,556 м, σ = 0,051 мм.

Выполненные исследования позволяют сделать вывод, что для корректного использования прибора необходимо

иметь примерно 6' уровень, закрепленный на ручке прибора, на оси вращения горизонтального круга. Модернизация API Laser Tracker 3 позволила достичь точности определения отклонений от горизонта 0,5", что в четыре раза лучше точности заявленной заводом изготовителем.

3.7 Исследования точности по внутренней сходимости лазерных трекеров API RADIAN и Leica AT 400-й серии

Вышеперечисленные работы указывают на необходимость проведения исследований перед использованием измерительного средства в высокоточных работах. Для проектирования геодезических сетей важными параметрами являются пространственные погрешности определения знаков. Установив, что погрешности определения углов и расстояний от эталонных приборов лежат в допустимых пределах в соответствии с техническими характеристиками производителя, выполним исследования повторяемости измерений лазерных трекеров. По данным многократных измерений определим эллипсоиды погрешностей лазерных трекеров.

Повторяемость – это степень близости друг к другу результатов независимых измерений, полученных одним и тем же методом, на одном и том же объекте испытаний и одним и тем же оборудованием [15].

Среднеквадратические погрешности определения расстояния, горизонтального и вертикального углов лазерных трекеров серии API RADIAN вычисляются по формулам [99, 106–108]:

$$m_L = 7 \cdot 10^{-4} \cdot L_{(M)}, \qquad (2.14)$$

$$m_{\beta} = m_{\nu} = 1 \cdot 10^{-2} + 5 \cdot 10^{-3} \cdot L_{(M)}, \qquad (2.15)$$

79

где m_L – погрешность измерения расстояний в режиме абсолютного дальномера; $m_{_{\beta}}$, $m_{_{\nu}}$ – погрешность горизонтального и вертикального углов.

Среднеквадратические погрешности измерения расстояний указаны в паспорте трекеров Leica AT 400-й серии ± 10 мкм. СКП угловых измерений вычисляются по формуле [104]:

$$m_{\rm B} = m_{\rm V} = 15 \cdot 10^{-3} + 6 \cdot 10^{-3} \cdot L_{(M)}. \tag{2.16}$$

Для удобства оценки повторяемости каждого измерения создается своя система координат. Начало системы координат – пересечение вертикальной и горизонтальной осей инструмента. Ось X сориентирована на положение отражателя со среднеарифметическими значениями координат, полученных на каждой остановке каретки. Ось Z направлена вверх и перпендикулярна оси X. Ось Y дополняет систему координат до правой.

Среднеквадратическая погрешность определения отражателя по трем координатам вычисляется как

$$m_{\rm OTP} = \sqrt{m_X^2 + m_Y^2 + m_Z^2} = \sqrt{m_L^2 + m_\beta^2 + m_\nu^2}, \qquad (2.17)$$

где $m_{\chi} = m_{L}; m_{\gamma} = m_{\beta}; m_{Z} = m_{\nu}$ – параметры эллипсоида погрешности положения отражателя.

Произведены многократные измерения для определения повторяемости координат центра сферического отражателя лазерными трекерами API и Leica. Паспортная точность центрирования отражателя внутри сферы ± 0,003 мм.

СКП вычислялась по результатам внутренней сходимости измерений с использованием известной формулы Бесселя:

80

$$m_{L,\beta,\nu} = \sqrt{\frac{\sum_{i=1}^{n} \Delta_i^2}{n-1}},$$
 (2.18)

где Δ_i – уклонение *i*-го результата измерения от среднего значения; *n* – число выполненных измерений в серии.

Исследования точности измерений лазерным трекером API RADIAN производились в помещении компараторной ИЯФ СО РАН при постоянной температуре + 24,9 °С и отсутствии конвекции воздушных потоков. Это в значительной степени ослабило влияние рефракции, что определяет получение результатов оценки точности, обусловленных только инструментальными погрешностями используемого измерительного оборудования. Сферический отражатель устанавливался на каретку и перемещался электродвигателем по направляющей компаратора.

Схема расположения трекера относительно направляющей представлена на рисунке 2.16.

Трекер находился ниже уровня направляющей на 167 мм. Положение отражателя в каждом месте остановки на направляющей измерялось трекером в автоматическом режиме 50 раз. Отражатель плавно поворачивался при перемещении каретки по направляющей для исключения ошибки за разность центра сферы и отражателя.

Рисунок 2.16 – Схема положения сферического отражателя, измеряемого лазерным трекером API RADIAN, на направляющей компаратора ИЯФ СО РАН

На рисунке 2.17 приведены значения среднеквадратических погрешностей результатов измерений [15]. Разброс результатов измерений укладывается в диапазон линейноугловых погрешностей, указанный в паспорте прибора.

Измерения трекерами Leica AT 401, 403 производились в здании сборки гирдерных модулей ESRF (Гренобль, Франция). Помещение термостатировано, температура 20,5 °C. Местами установки сферического отражателя являлись стабильные геодезические знаки гирдерных модулей и электромагнитных элементов.

Максимальное превышение между точками 4-5 1235 мм. Схема расположения мест установки сферического отража-

Рисунок 2.17 – График зависимости погрешностей лазерного трекера API RADIAN от расстояния

Рисунок 2.18 – Схема расположения сферического отражателя при проведении измерений лазерными трекерами Leica

теля относительно лазерного трекера приведена на рисунке 2.18.

На рисунках 2.19, 2.20 приведены значения среднеквадратических погрешностей результатов измерений лазерными трекерами АТ 401 и АТ 403.

Следует отметить, что величины СКП трекера Radian меньше величин СКП трекеров Leica из-за гораздо меньших измеренных расстояний первым. Все измерительные инструменты соответствуют заявленным характеристикам производителя.

На основании проведенного исследования определены СКП измерений вертикального и горизонтального углов и

Рисунок 2.19 – График зависимости погрешностей лазерного трекера Leica AT401 от расстояния

Рисунок 2.20 – График зависимости погрешностей лазерного трекера Leica AT403 от расстояния

расстояний. Полученные в результате выполненных исследований значения полуосей эллипсоидов погрешностей являются математическим основанием настройки модуля Measurement Simulation для моделирования геодезических измерений в программном продукте Spatial Analyzer.

3.8 Исследования точности измерений API Laser Tracker 3 на координатно-измерительной машине Contura G2

измерительного оборудова-B качестве эталонного координатно-измерительная ния использовалась маши-Contura G2. Предельно допустимая погрешность в на соответствии с ISO10360 линейного измерения при температуре окружающей среды от 18 °C до 22 °C составляет 1,9 мкм + L/300, где L – это измеренная длина в миллиметрах [86]. Помещение, в котором проходили измерения, было термостабилизировано, поддерживалась температура 21 °С. Для проверки точности измерений API Laser Tracker 3, было выполнено определение пространственного положения 10 геодезических знаков, закрепленных на плите координатноизмерительной машины Contura G2. Эти 10 геодезических знаков представляют собой подставки под 1,5 дюймовый отражатель для API Laser Tracker 3, рисунок 2.21. Сфера отражателя устанавливается на них на три точки и фиксируется магнитом. Магнит при этом отражателя не касается. Максимальное расстояние между геодезическими знаками 1,75 м. Сам лазерный трекер так же закреплялся на плите.

Были произведены измерения в режиме интерферометра и в режиме абсолютного дальномера с шести станций трекера при. Перед измерениями выполнены необходимые проверки и калибровки. 3.8 ИССЛЕДОВАНИЯ ТОЧНОСТИ ИЗМЕРЕНИЙ API LASER TRACKER 3 —— НА КООРДИНАТНО-ИЗМЕРИТЕЛЬНОЙ МАШИНЕ CONTURA G2

Порядок измерений. При установке отражателя на геодезический знак, производилось 50 отсчетов API Laser Tracker 3, в это же время координатно-измерительная машина Contura G2 измеряла сферу отражателя, набирая от 20 до 30 точек на ее поверхности. Данные для трекера усредняются, для коор-

Рисунок 2.21 – Геодезические знаки, закрепленные на плите

Рисунок 2.22 – Схема расположения оборудования

динатно-измерительной машины вычисляются координаты центра сферы.

После этого отражатель перемещался на следующий геодезический знак, и процедура повторялась, рисунок 2.22. На все геодезические знаки отражатель устанавливался единообразно, нанесенным на бленде номером вверх.

В таблице 2.1 приведены средние значения результатов геодезических измерений со средним квадратическим отклонением для Contura G2 из шести измерений.

Таблица 2.1 – Средние значения результатов измерений координатно-измерительной машины Contura G2.

Ha-	Среднее	СКП	Среднее	СКП	Среднее	СКП
звание	значе-	ПО ОСИ	значение	ПО ОСИ	значе-	ПО ОСИ
точки	Х(мм)	A(MM)		I (MM)	ние по Z(мм)	Z(MM)
т.1	0,002	0,002	-0,0011	0,001	-0,0018	0,002
т.2	-1,693	0,000	400,3370	0,001	-0,0333	0,001
т.3	-0,884	0,001	1000,8808	0,002	-0,0496	0,002
т.4	-0,002	0,002	1399,5634	0,002	-0,0028	0,002
т.5	498,893	0,001	1099,6157	0,002	0,0963	0,001
т.б	497,966	0,001	301,2572	0,001	0,0169	0,001
т.7	899,667	0,000	-98,4910	0,003	0,1239	0,001
т.8	899,720	0,001	501,1332	0,001	0,0425	0,001
т.9	899,138	0,001	900,5067	0,001	0,0304	0,001
т.10	898,104	0,001	1500,8890	0,001	-0,0006	0,000

Средние квадратические погрешности определения координат из шести измерений на координатно-измерительной машине Contura G2 соответствуют паспортным значениям.

В таблице 2.2 приведены средние значения результаты измерений API Laser Tracker 3. Прибор работал в режиме интерферометра (IFM). То есть луч лазера за все время проведения измерений ни разу не прерывался.

Таблица 2.2 – Средние значения результатов измерений API Laser Tracker 3 в режиме IFM.

Ha-	Среднее	СКП	Среднее	СКП	Среднее	СКП
звание	значе-	по оси	значение	по оси	значе-	по оси
точки	ние по	Х(мм)	по Ү(мм)	Ү(мм)	ние по	Z(мм)
	Х(мм)				Z(мм)	
т.1	0,000	0,009	0,0000	0,008	0,0000	0,007
т.2	-1,693	0,007	400,3473	0,006	-0,0338	0,005
т.3	-0,885	0,006	1000,9065	0,006	-0,0501	0,005
т.4	0,000	0,006	1399,5986	0,010	0,0000	0,007
т.5	498,912	0,005	1099,6397	0,007	0,0892	0,005
т.6	497,987	0,007	301,2624	0,009	0,0082	0,005
т.7	899,691	0,011	-98,4987	0,011	0,1238	0,007
т.8	899,750	0,008	501,1385	0,003	0,0356	0,004
т.9	899,167	0,007	900,5234	0,006	0,0216	0,005
т.10	898,137	0,007	1500,9183	0,009	0,0000	0,009

Среднее квадратическое отклонение от Contura G2:

σ_x=0,012 мм; σ_y=0.014 мм; σ_z=0,004 мм.

В таблице 2.3 приведены средние значения результатов измерений API Laser Tracker 3. Прибор работал в режиме абсолютного дальномера (ADM).

Таблица 2.3 – Ср	редние .	значения	результатов	измерений	API
Laser Tracker 3 в	режим	e ADM.			

На- звание точки	Среднее значе- ние по Х(мм)	СКО по оси Х(мм)	Среднее значение по Y(мм)	СКО по оси Ү(мм)	Среднее значе- ние по Z(мм)	СКО по оси Z(мм)
т.1	0,000	0,010	0,0000	0,014	0,0000	0,009
т.2	-1,694	0,012	400,3489	0,011	-0,0341	0,005
т.3	-0,884	0,010	1000,9058	0,010	-0,0512	0,005
т.4	0,000	0,008	1399,5969	0,013	0,0000	0,008
т.5	498,913	0,006	1099,6394	0,009	0,0000	0,004
т.б	497,987	0,007	301,2580	0,012	-0,0810	0,005
т.7	899,695	0,014	-98,5063	0,014	-0,0357	0,010
т.8	899,750	0,012	501,1367	0,005	-0,1264	0,003
т.9	899,172	0,011	900,5229	0,009	-0,1401	0,008
т.10	898,139	0,008	1500,9203	0,016	-0,1596	0,010

Среднее квадратическое отклонение от Contura G2:

σ_x=0,013 мм; σ_y=0.016 мм; σ_z=0,004 мм.

Анализ результатов исследований показал, что API Laser Tracker 3 может быть эффективно использован для геодезического контроля изготовления магнитных элементов и их компонентов.

3.9 Алгоритм вычисления секторов измерений со станции лазерного трекера с учетом допусков

Основным требованием при установке в проектное положение элементов ускорителей заряженных частиц и другого уникального технологического оборудования является соблюдение допусков радиального и высотного положения [18, 55]. Установка станции лазерного трекера часто выбирается непосредственно на объекте с учетом создавшейся ситуации (ограничение видимости, неблагоприятные условия для измерений и т. д.) Для установки технологического оборудования на проектную кольцевую орбиту с заданной точностью требуется определить оптимальные зоны местоположения станций лазерного трекера.

Так как визирный луч лазерного трекера при установке технологического оборудования или съемке сети ускорительного комплекса находится под разными углами к контролируемым направлениям орбиты пучка, необходимо

Рисунок 2.23 – Проекция СКП определения положения оборудования на контролируемое направление: a, b – полуоси эллипса погрешностей лазерного трекера; L – расстояние от станции прибора до отражателя; R – радиальное направление

определить проекции на поперечные выделенные направления *m*_{*R* 7} рисунок 2.23.

Поле допуска современных ускорителей в поперечных направлениях к орбите

$$m_{R,Z,\text{TOT}} = 0.05 \text{ MM}.$$
 (2.19)

Для расчетов возьмем значения погрешностей измерений лазерного трекера API Radian (формулы (2.14), (2.15). Это значения максимально допустимой ошибки (Maximum Permissible Error) в соответствии со стандартом ASME B89.4.19-2006 [107].

Рассмотрим случай постановки станции за проектным радиусом в здании комплекса и определим величину m_{R} , рисунок 2.24

Рисунок 2.24 – Станция за проектным радиусом

Определим расстояние *L* от станции лазерного трекера до отражателя, который установлен на технологическом обору-

довании, и горизонтальный угол β между направлением на центр системы координат и заданной линией [51].

По теореме косинусов определим L и β :

$$L = \sqrt{(R^2 + (R+S)^2 - 2 \cdot R \cdot (R+S) \cdot \cos \alpha)},$$
 (2.20)

$$\beta = \arccos\left(\frac{\left(R+S\right)^2 + L^2 - R^2}{2\cdot \left(R+S\right)\cdot L}\right),$$
(2.21)

где *R* – заданный радиус, на который необходимо установить технологическое оборудование; *S* – расстояние от лазерного трекера до заданного радиуса.

Для определения величины m_R необходимо знать угол между полуосью эллипса погрешностей и заданным направлением φ. Вычисляем его через угол ω

$$\omega = 180 - \beta - \alpha; \qquad (2.22)$$

$$\varphi = \omega - 90. \tag{2.23}$$

Величина *т*_{*в*}:

$$m_R = \cos\varphi \cdot m_\beta. \tag{2.24}$$

По данному алгоритму произведены расчеты для R = 10 м, $\alpha = n + 5^{\circ}$ (n = 0–85°), S = 0,5; 2; 5; 10 м. Критерий для выбора диапазона измерений параметров (*L* и β) на станции лазерного трекера установим следующим образом:

$$m_R \le m_{R \text{ доп.}}.$$
 (2.25)

Результаты, удовлетворяющие этому условию, приведены в таблице 2.4. Графическая интерпретация результатов расчетов при работе лазерным трекером за кольцевой осью технологического оборудования приведена на рисунке 2.25.

S	L	γ	mr
0.5	6.8	62	0.049
2	6.8	56	0.049
5	7.8	38	0.047
10	11.6	21	0.049

Рисунок 2.25 – Ограничения по рабочему диапазону β, в пределах которых обеспечивается допуск на выставку оборудования для расстояний S

Рассмотрим вариант установки станции внутри проектного радиуса, рисунок 2.26.

Длина *L* и угол β вычисляются по формулам:

$$L = \sqrt{R^2 + (R - S)^2 - 2 \cdot R \cdot (R - S) \cdot \cos \alpha}; \qquad (2.26)$$

3.9 АЛГОРИТМ ВЫЧИСЛЕНИЯ СЕКТОРОВ ИЗМЕРЕНИЙ СО СТАНЦИИ ЛАЗЕРНОГО ТРЕКЕРА С УЧЕТОМ ДОПУСКОВ

$$\beta = \arccos\left(\frac{\left(R-S\right)^2 + L^2 - R^2}{2 \cdot \left(R-S\right) \cdot L}\right).$$
(2.27)

Значения ω, φ, m_R вычисляются по формулам (2.22) – (2.24). Результаты вычислений приведены в таблице 2.5.

Рисунок 2.26 – Станция внутри проектного радиуса

S, м	L, м	β, °	т _, , мм		
0,5	9,8	63	0,050		
1	10,9	60	0,050		
1,5	13,1	50	0,049		
2	12,8	52	0,046		
5	11,2	63	0,029		

Таблииа 2	.5
-----------	----

Для станций, находящихся от проектного радиуса на расстоянии 0,5 и 1 м, определяются ограничения по рабочему диапазону β в 63° и 60° соответственно. Для расстояний 1,5,

2, 5 м приведены значения m_{R} , при $\alpha = 90^{\circ}$ условие (формула 2.19) соблюдается.

Оптическая структура ускорителей и большинство технологического оборудования проектируется в единой горизонтальной плоскости. Рассмотрим зависимость m_z от изменения вертикального угла v относительно горизонтальной плоскости для расстояний от 0,5 до 10 м. Значение m_z вычисляется по формуле

$$m_z = \cos v \cdot m_v \,. \tag{2.28}$$

Графическая интерпретация определения m_Z представлена на рисунке 2.27.

Рисунок 2.27 – Величина т_г

Углы – 59° и + 79° определяют рабочий диапазон измерений вертикального угла для лазерных трекеров API T3 и Radian. Результаты исследований позволяют определить рабочие зоны для измерений лазерными трекерами с заданной точностью при юстировке оборудования, что в конечном итоге повышает производительность труда.

Результаты расчетов приведены на графике, рисунок 2.28.

3.9 АЛГОРИТМ ВЫЧИСЛЕНИЯ СЕКТОРОВ ИЗМЕРЕНИЙ СО СТАНЦИИ _______ ЛАЗЕРНОГО ТРЕКЕРА С УЧЕТОМ ДОПУСКОВ

Рисунок 2.28 – График зависимости величины т_z от изменения угла v относительно горизонтальной плоскости для расстояний от 0,5 до 10 м

В качестве выводов по результатам выполненных исследований, представленных во втором разделе выделим следующие.

Лазерные трекеры могут быть эффективно использованы, как основные измерительные средства при монтаже оборудоования УНК. Однако, для достижения требуемой точности, перед началом производства геодезических измерений необходимо производить ряд исследований, рассмотренных выше.

В частности, влияние внутренней стабилизации, осуществление проверки работы внутреннего электронного уровня. С помощью разработанного алгоритма вычисления оптимальных секторов измерений со станции лазерного трекера за кольцевой осью тоннеля с радиусом 10 метров удалось установить ограничения, нарушения которых не позволит достичь заданной точности определения координат в 0,07 мм, а именно:

при постановке станции от кольцевой оси на расстоянии 0,5 м – ±62°;

– на расстоянии станции от кольцевой оси в 2 м – ±56°;

– на расстоянии между станцией и осью 5 м – ±38°;

– на расстоянии 10 м– ±21°.

Установленный допуск на среднеквадратическую погрешность по вертикальному направлению (m_z) выполняется при расстоянии лазерного трекера до отражателя в 6 м на всем рабочем диапазоне вертикального угла лазерных трекеров API и Radian.

Представленный, разработанный алгоритм может быть использован для расчета секторов работы лазерного трекера горизонтальных и вертикальных углов не только для рассмотренного допуска, но и для других допусков на установку технологического оборудования находящегося на кольцевой оси с различными радиусами.

4 МЕТОДИКА ГЕОДЕЗИЧЕСКОГО КОНТРОЛЯ ИЗГОТОВЛЕНИЯ ФИЗИЧЕСКОГО ОБОРУДОВАНИЯ УНК

4.1 Методика нахождения геометрической оси для паспортизации магнитных элементов комплекса ВЭПП-4м

Инженерно-геодезический контроль позволяет предотвратить брак в определении фактического технического состояния конструкции технологического оборудования, на основе проверки геометрических параметров. Критичность выбранных для геодезического контроля геометрических параметров определялась наибольшим вкладом параметра в конечную погрешность юстировки. Для магнитных элементов выполняется контроль взаимного положения геодезических знаков относительно магнитной оси элемента. Магнитные оси элементов определяются при магнитных измерениях.

До появления API Laser Tracker 3 в ИЯФ нахождение геометрического центра магнитного элемента выполнялось при помощи средств машиностроения. Для нахождения координат геодезических знаков использовались линейки, штангенциркули, микрометры, изготавливались специальные шаблоны. Основным недостатком существующей методики являлось проведение измерений одновременно только по одной координатной оси. Необходимо было применять несколько средств измерений для получения всех трех координат, что приводило в свою очередь к ошибкам определения координат геодезических знаков на внешнем железе магнитного элемента. При изготовлении специальных шаблонов требовалось их компарирование. Для выполнения измерений, магнитный элемент необходимо было устанавливать на поверочную плиту. Сам процесс измерений был достаточно трудоемок и требовал повышенного внимания со стороны персонала.

С появлением API Laser Tracker 3 отпала необходимость в установке измеряемого элемента на поверочную плиту, все три координаты определяются одновременно единственным средством измерения. На рисунке 3.1 представлено сравнение методики измерения магнитных элементов средствами машиностроения с разработанной методикой измерения при помощи API Laser Tracker 3.

Рисунок 3.1 – Сравнение методик геодезических измерений

В качестве примера предложенной методики рассмотрим координирование геодезических знаков на квадрупольных линзах для экспериментального промежутка ВЭПП-4м.

4.1 МЕТОДИКА НАХОЖДЕНИЯ ГЕОМЕТРИЧЕСКОЙ ОСИ ДЛЯ ПАСПОРТИЗАЦИИ ______ МАГНИТНЫХ ЭЛЕМЕНТОВ КОМПЛЕКСА ВЭПП-4М

Возникла задача установить в экспериментальном промежутке ВЭПП-4м две квадрупольные линзы. Для решения этой задачи были взяты две линзы с нужными физическими параметрами, рисунок 3.3. Так как эти линзы раньше использовались для другой установки, на них была предусмотрена старая идеология выставки (два геодезических знака и базовая плоскость). Но использовать старую идеологию при установке линзы на ВЭПП-4м оказалось невозможно, так как линза должна быть установлена под углом 45°. На примере линзы L1 предложена методика нахождения механической оси линзы при помощи API Laser Tracker 3, рисунок 3.2.

Рисунок 3.2.1 – Этапы еахождения механической оси линзы

Рисунок 3.2 – Порядок действий для нахождения механической оси элемента

Рисунок 3.3 – Линза L1 для ВЭПП-4м

Цель данной методики определить механическую ось магнитного элемента. Создать систему координат, и в ней определить координаты геодезических знаков, на внешнем железе магнитного элемента. Интегрировать элемент в магнитную структуру ускорительного комплекса. Также оценивается точность изготовления и сборки магнитного элемента.

Произведена доработка линз. В боковой накладке внешнего железа, которая после установки на ВЭПП-4м, должна быть развернута внутрь кольца ускорителя, необходимо заложить четыре геодезических знака. Знак представляет собой отверстие диаметром 6^{+0,03} мм. API Laser Tracker 3 был установлен так, чтобы с одной станции была возможность выполнить измерения на четыре геодезических знака, выполнить сканирование поверхности всех четырех полюсов и определить координаты торца каждого полюса. Перед про-

Рисунок 3.4 – Результаты измерений линзы L1

ведением измерений API Laser Tracker 3 был откалиброван. Измерения на четыре геодезических знака и четыре точки на торце, выполнено в режиме Single Point. При одном измерении выполняется 50 отсчетов. Средняя квадратическая погрешность одного измерения составляет 0,006 мм. Сканирование полюсов выполнено в режиме Spatial Scan с шагом 1 мм. Результат измерений показан на рисунок 3.4

Для получения оси пучка в программном обеспечении Spatial Analizer была выполнена следующая обработка результатов измерений. По каждому сканированному полюсу построен оптимальный цилиндр, вписанный в облако точек. Среднее квадратическое отклонение от оптимального цилиндра для полюсов (на левом полюсе линзы находятся четыре геодезических знака) составило:

σ_{левый полюс} = 0,011 мм, максимальное отклонение 0,040 мм по 658 точкам;

 $\sigma_{\text{правый полюс}} = 0,014$ мм, максимальное отклонение 0,048 мм по 722 точкам;

 $\sigma_{_{верхний полюс}} = 0,011$ мм, максимальное отклонение 0,039 мм по 709 точкам;

 $\sigma_{_{\text{нижний полюс}}} = 0,016$ мм, максимальное отклонение 0,043 мм по 657 точкам.

Для каждого оптимального цилиндра найдены точки начала, середины и окончания цилиндра, по которым в свою очередь построена ось цилиндра. По четырем точкам, измеренным на торцах полюсов, построена плоскость. Плоскость имеет среднее квадратическое погрешность 0,313 мм. Последнее говорит о том, что полюса линзы вдоль орбиты пучка собраны некорректно. Однако в данном случае это не имеет большого значения, поскольку допуск вдоль орбиты пучка может быть грубее на порядок. Пересечение каждой оси ци-

линдра с плоскостью дает четыре точки расположенные на плоскости торца. Необходимо помнить, что эти четыре точки не лежат на физическом железе торца полюса линзы, а находятся в 25 мм от него, так как оснастка, с помощью которой было выполнено измерение, имеет смещение (offset) 25 мм. Для получения точек, расположенных на физическом железе торца линзы, были построены вспомогательные системы координат для оси каждого цилиндра. Вспомогательная система координат строится следующим образом. За начало системы координат берется точка пересечения оси цилиндра с плоскостью. Ось Х направляется на точку окончания оси цилиндра. Направление оси Z в данном случае неважно и может быть взято как на предыдущей системе координат или произвольно. В построенной вспомогательной системе координат создаются две точки с координатами, приведенными в таблице 3.1. Следует добавить, что фактическая длина полюса равна 170 мм. Такая же операция повторяется для трех оставшихся полюсов.

Название	Х, мм	Ү, мм	Z, мм
Торец 1	25	0	0
Торец 2	195	0	0

Полученные точки на противолежащих полюсах, находящиеся на одном торце, соединяются линиями. Точка пересечения этих линий даст механическую ось магнитного элемента на этом торце. Средняя квадратическая погрешность определения механической оси по осям четырех цилиндров составила 0,026 мм. Такая же операция проделывается на втором торце полюсов линзы. В результате применения разработанной методики имеем две точки на механической оси (вход в магнитный элемент и выход из магнитного элемента), по которым строим линию и находим ее центр, что дает третью точку (середина магнитного элемента). Эти три точки определяют ось пучка магнитного элемента. Среднее квадратическое погрешность определения механической оси относительно геодезических знаков на внешнем железе магнитного элемента составила 0,029 мм. На рисунке 3.5 представлены все выполненные построения и показана ось пучка частиц.

На оси пучка строится система координат. Начала системы координат задает точка входа в магнитный элемент, ось X направлена на точку выхода из магнитного элемента, ось Y перпендикулярна плоскости, проведенной по четырем геодезическим знакам. Для получения заданного проектного угла (элемент должен висеть под углом 45°) разворачиваем систему координат вокруг оси X на 45° в нужную сторону. После

Рисунок 3.5 – Три точки на оси пучка частиц

4.1 МЕТОДИКА НАХОЖДЕНИЯ ГЕОМЕТРИЧЕСКОЙ ОСИ ДЛЯ ПАСПОРТИЗАЦИИ ______ МАГНИТНЫХ ЭЛЕМЕНТОВ КОМПЛЕКСА ВЭПП-4М

этого координаты четырех геодезических знаков и координаты трех точек на орбите пучка экспортируется в текстовый файл. Текстовый файл с координатами магнитного элемента подгружается в файл с установкой в данном случае комплекс ВЭПП-4м. Причем, текстовый файл должен быть загружен именно в систему координат комплекса ВЭПП-4м (где Х,У плановые координаты, Z-высота), поскольку элемент в нем уже расположен под нужными нам углами. В файле комплекса ВЭПП-4м физиками заданы три точки с проектными координатами положения магнитного элемента в структуре ускорителя. Точка входа в элемент, середина элемента и выход из элемента. На последнем этапе необходимо совместить ось пучка, обозначенную тремя точками на элементе, с тремя точками в структуре ускорителя. Это совмещение нужно выполнить с одним условием: - магнитный элемент не должен вращаться вокруг осей Х и Ү. Возможно смещение по трем осям и разворот вокруг оси Z. После совмещения трех точек магнитный элемент установлен в структуру ускорителя. Следующим этапом производилась установка элемента по полученным координатам непосредственно на ускорительном комплексе.

Разработанная методика применяется для паспортизации магнитных элементов в ИЯФ СО РАН.

4.2 Методика геодезического обеспечения при изготовлении дипольных магнитов для бустера NSLS-II

Цель разработанной методики заключается в определении положения внешних геодезических знаков на дипольном магните относительно магнитного центра элемента. Магнитный центр элемента вычисляется по результатам магнитных измерений на специальном стенде при помощи каретки с датчиками Холла. Во время проведения магнитных измерений положение каретки фиксируется при помощи API Laser Tracker 3.

Дипольный магнит (поворотный) – в физике ускорителей элемент создающий однородное магнитное поле. Используется, в первую очередь, для создания ведущего поля, задаю-

Рисунок 3.6 – BF фокусирующий магнит

Рисунок 3.7 – BD дефокусирующий магнит

щего траекторию пучка заряженных частиц, а также в системах впуска/выпуска пучка, для коррекции равновесной орбиты и пр.

Для кольца бустера NSLS-II существует два типа магнитов: ВF-фокусирующий магнит и BD-дефокусирующий магнит. На рисунках 3.6, 3.7 представлены модели BF фокусирующего и BD дефокусирующего магнита. Магниты имеют разные геометрические параметры.

Для определения точного местоположения орбиты пучка, на каждом магните предусмотрены по 13 геодезических знаков. Пять знаков на верхней площадке магнита и по четыре с каждого торца. Для сравнения на магнитах ускорителя ВЭПП-4м используется два знака и базовая плоскость. Геодезические знаки представляют собой отверстия диаметром 6,35+0,01 мм, засверленные в теле магнита перпендикулярно плоскости с точностью 0,01 мм. Отверстия предназначены для стандартной подставки под отражатель с диаметром хвостовика 6,35 мм. Сама подставка имеет допуск на диаметр хвостовика -0,002 мм. Погрешность положения центра отражателя относительно хвостовика составляет 0,02 мм. После изготовления, по знакам осуществляются геодезические измерения на координатно-измерительной машине Contura G2 и производится их привязка к базовым поверхностям на полюсе магнита (в локальной системе координат). Для получения центра геодезического знака используется стандартный полуторадюймовый отражатель с подставкой для API Laser Tracker 3. По многочисленным измерениям геометрический центр отражателя был определен со средней квадратической погрешностью 0,001 мм. Согласно паспорту на отражатель отличие геометрического центра от оптического составляет 0,002÷0,003 мм. Для минимизации этой погрешности отражатель устанавливается по возможности единообразно на все измеряемые геодезические знаки (нанесенным номером вверх). Для определения местоположения орбиты пучка требуется проведение измерений на специальном стенде магнитных измерений, рисунок 3.8.

Рисунок 3.8 – Общий вид стенда магнитных измерений

Рисунок 3.9 – Каретка с датчиками холла и отражателями
Основная задача этого технологического процесса заключается в привязке магнитной оси дипольного магнита к 13 геодезическим знакам, расположенным на внешнем железе магнита. Для проведения измерений магнитного поля было изготовлено два комплекта оснастки (так как магниты имеют разную конструкцию). Оснастка включает в себя каретку с закрепленными на ней датчиками Холла, двумя 8 мм отражателями для API Laser Tracker 3 и высокоточную направляющую для данной каретки.

На каретке смонтирована медная пластина с датчиками Холла, посадочные места под два отражателя для API Laser Tracker 3 и площадки для движения по направляющим, рисунок 3.9.

Положение датчиков Холла определено при помощи микроскопа УИМ-23 с привязкой к базовым поверхностям на медной пластине [41]. Средняя квадратическая погрешность определения положения датчиков Холла 0,01 мм, точнее определить не представляется возможным из-за конструктивных особенностей и небольшого размера (0,1 х 0,05 мм) датчиков. В свою очередь медная пластина установлена на каретке при помощи координатно-измерительной машины Contura G2. Измерены и зафиксированы расстояния между базовыми плоскостями на каретке и медной пластине $(\sigma = 0,002 \text{ мм})$. Так же на каретке при помощи координатноизмерительной машины Contura G2 установлены шесть площадок для движения по направляющим. Четыре площадки определяют вертикальное положение датчиков Холла, две горизонтальное. Напротив каждой из площадок установлена прижимная пружинная пластина. Пластина должна обеспечивать контакт каретки с направляющей.

Одной из сложных задач оказалась определение положения центров отражателей, расположенных на каретке, ри-

сунок 3.10. Из-за маленьких размеров призма отражателя конструктивно размещена в пластиковом корпусе, который не имеет привязки к центру отражателя. То есть, отражатель пригоден только для проведения относительных измерений. В данном случае требовались абсолютные координаты центров отражателей в системе координат каретки. Выполнена привязка оптических центров отражателей к системе координат каретки. Для этого на плите координатно-измерительной машины Contura G2 закреплены: каретка, API Laser Tracker 3, пять геодезических знаков под стандартный полуторадюймовый отражатель. Каретка располагается на одной высоте, с осью вращения вертикального круга API Laser Tracker 3. Сделано это для того чтобы минимизировать ошибку определения координат из-за угла падения луча в отражатель.

Координатно-измерительная машина Contura G2 определяет координаты базовых поверхностей на каретке и медной пластине. После этого задается система координат каретки. В этой системе координат, поочередно, совместно с API Laser Tracker 3, определяется положение центра полуторадюймового отражателя, установленного на каждый из пяти геодезических знаков, закрепленных на плите. После того как АРІ Laser Tracker 3 выполняет 50 отсчетов на центр отражателя, определяется среднее значение. Координатно-измерительная машина Contura G2, измеряет наружную сферу отражателя, в 25-30 точках, по которым вычисляется геометрический центр сферы. После выполнения измерений на пяти геодезических знаках, закрепленных на плите, API Laser Tracker 3 определяет положение двух отражателей, закрепленных на каретке. После окончания измерений имеем два набора данных:

- базовые поверхности и пять геодезических знаков на плите в системе координат каретки, измеренные координатно-измерительной машиной Contura G2 Средняя квадратическая погрешность определения 0,005 мм;

- пять геодезических знаков на плите и координаты центров отражателей закрепленных на каретке в системе координат лазерного трекера, измеренные API Laser Tracker 3. Средняя квадратическая погрешность определения 0,007 мм.

Рисунок 3.10 – Геодезическая привязка отражателей к системе координат каретки

Для пересчета координат центров отражателей закрепленных на каретке, пять геодезических знаков измеренных API Laser Tracker 3, ориентируются по пяти геодезическим знакам измеренных координатно-измерительной машиной Contura G2, так чтобы сумма квадратов отклонений была минимальна. Эта привязка выполняется в системе координат каретки. Средняя квадратическая погрешность привязки составила 0,01 мм по результатам многочисленных измерений.

После выполнения привязки местоположение API Laser Tracker 3 и полученные в результате измерений координаты центров отражателей, закрепленных на каретке, определены в системе координат каретки.

Дальнейшие измерения выполняются непосредственно на магните совместно с измерениями магнитного поля на специальном стенде магнитных измерений.

3.2.2. Опыт применения API Laser Tracker 3 на стенде магнитных измерений ИЯФ СО РАН

На стенде магнитных измерений установлена металлическая плита 4х6 м толщиной 300 мм. Плита установлена на резиновые опоры, чтобы ослабить влияние возможных вибраций. На плите смонтированы два гирдера на стандартных подставках. По периметру плиты закреплено девять геодезических знаков, установлена подставка под API Laser Tracker 3. Стандартные подставки под гирдера имеют возможность регулировки по высоте 50 мм и в плане 25 мм. Для проведения геодезических измерений на гирдер устанавливается магнит, в него вкладывается высокоточная направляющая и фиксируется на базовых поверхностях (для контроля расстояний между базовыми поверхностями на направляющей и торцевыми геодезическими знаками измеряется концевыми мерами длины 1 кл.). Высокоточная направляющая предназначена для позиционирования каретки внутри магнита, рисунок 3.11. Имеет

Рисунок 3.11 - Высокоточная направляющая

Рисунок 3.12 – Каретка внутри направляющей

4 МЕТОДИКА ГЕОДЕЗИЧЕСКОГО КОНТРОЛЯ ИЗГОТОВЛЕНИЯ ФИЗИЧЕСКОГО ОБОРУДОВАНИЯ УНК _____

базовые поверхности и посадочные места для закрепления на магните. Прямолинейность направляющей проверена на координатно-измерительной машиной Contura G2 и составляет 0,04 мм на двух метрах. Направляющая сконструирована с таким расчетом, чтобы датчики Холла на каретки находились в медианной плоскости магнита.

На рисунке 3.12 представлена каретка, расположенная внутри высокоточной направляющей.

Лазерный трекер устанавливается на свою подставку, рисунок 3.13. Для более жесткой фиксации подставка под трекер не имеет возможности регулировки по высоте. Медианная плоскость магнита устанавливается на высоту оси вращения вертикального круга API Laser Tracker 3 при по-

Рисунок 3.13 – Закрепление лазерного трекера на стенде магнитных измерений

мощи регулировок по высоте на стандартных подставках под гирдер. Для протяжки каретки внутри направляющей, используется шаговый двигатель с измерителем перемещений, жестко закрепленный на противоположной трекеру стороне гирдера.

3.2.3. Геодезические измерения для определения положения каретки внутри магнита.

Необходимо определить координаты центров отражателей, закрепленных на каретке, относительно геодезических знаков дипольного магнита в системе координат магнита.

Каретка устанавливается в направляющую, подсоединяется механизм протяжки и кабель коммутации. От базовой поверхности на торце направляющей устанавливается начальная позиция каретки, при этом должны быть выбраны все люфты в механизме протяжки. API Laser Tracker 3, расположенный на подставке, определяет координаты геодезических знаков на плите (по возможности все девять штук). Так же определяются координаты двух ближних геодезических знаков на верхней поверхности магнита.

Лазерный трекер наводится на один из отражателей, расположенных на каретке. В программном комплексе трекера, Spatial Analyzer, устанавливается режим работы "съемка стабильной точки". Этот режим предназначен для съемки точки, которая остается стабильна в течении заданного времени. Запускается механизм протяжки. Шаг протяжки 5 мм измеряется и дополнительно фиксируется измерителем перемещений на шаговом двигателе. Пауза между шагами 1-2 секунды. За это время трекер успевает определить, что координаты центра отражателя стабильны, и выполнить измерение, взяв 50 отсчетов, из которых находится среднее значение. Средняя квадратическая погрешность определения 0,025 мм. Таким

4 МЕТОДИКА ГЕОДЕЗИЧЕСКОГО КОНТРОЛЯ ИЗГОТОВЛЕНИЯ ФИЗИЧЕСКОГО ОБОРУДОВАНИЯ УНК _____

образом, делается 350 шагов, что составляет со всеми подготовками 40 минут. Затем каретка возвращается в исходное положение и измерения повторяются снова. Для каждого из отражателей с целью контроля делается по два прохода по 350 шагов каждый. Полный цикл геодезических измерений магнита занимает около 4 часов. После этого контролируется положение трекера относительно геодезических знаков, расположенных на плите и положение магнита по двум видимым знакам на верхней площадке. Средняя квадратическая погрешность определения 0,025 мм. Если среднее квадратическое отклонение центров геодезических знаков отличается от ранее полученных, из предыдущих измерений, более чем на 0,04 мм, измерения бракуются и повторяются снова. Лазерный трекер переставляется на штатив. С этой станции выполняются измерения на геодезические знаки, расположенные на плите и все знаки на верхней площадке магнита. Средняя квадратическая погрешность определения 0,015 мм.

3.2.4 Обработка результатов геодезических измерений

В программный комплекс Spatial Analyzer вводятся координаты геодезических знаков на магните, полученные при помощи координатно-измерительной машины Contura G2. К этим геодезическим знакам с помощью наилучшей привязки (сумма квадратов отклонений по группе знаков должна быть минимальна) осуществляется привязка станции трекера на штативе. В свою очередь к станции трекера на штативе привязывается станция трекера на жестко закрепленной подставке, расположенной на плите. Средняя квадратическая погрешность этих привязок не превышает 0,049 мм. В итоге получаем координаты центров отражателей, расположенных на каретке в локальной системе координат данного магнита. Результат определения координат центров отражателей, расположенных на каретке и информация о положении датчиков холла относительно отражателей, закрепленных на каретке, передается физикам для введения поправки за

Рисунок 3.14 – Блок-схема контроля изготовления магнитов

магнитные измерения. Поправка вводится путем смещения и разворота системы координат магнита. Величина поправки может достигать до 0,5 мм в смещениях координат геодезических знаков. Эта величина обусловлена неоднородностью материала и точностью изготовления магнита. Разработанную методику можно представить в виде блоксхемы, изображенной на рисунке 3.14.

После пересчета с учетом поправки на магнитные измерения получаем каталог координат геодезических знаков магнита в локальной системе координат. Координаты геодезических знаков относительно магнитной оси элемента определены со средней квадратической погрешностью 0,065 мм. Физиками на основании проведенных магнитных измерений определяется какой дипольный магнит, в каком месте кольца бустера будет установлен. После этого выдаются проектные координаты на каждый магнит. Из локальной системы координат координаты дипольного магнита пересчитываются в систему координат бустера NSLS-II и используются для сборки модулей. Так же эти координаты используются для монтажа модулей в тоннеле бустера NSLS-II.

Для каждого магнитного элемента был составлен паспорт в который помимо физических параметров были внесены данные о положении магнитной оси относительно внешних геодезических знаков на элементе. Магнитная ось получена по результатам магнитных измерений с контролем геометрического положения датчиков Холла в элементе, либо по результатам механических обмеров полюсов элемента [2,3]. Магнитная ось представлена тремя точками (вход, середина и выход из элемента). По этим точкам строится локальная система координат каждого элемента, для которой в свою очередь определяются координаты внешних геодезических знаков. Эта информация заносится в паспорт элемента. На рисунке 3.24 показан BD дипольный магнит (вид сверху) и схема расположения и название знаков.

Рисунок 3.24 – Расположение и название геодезических знаков на дипольном магните.

BR- Booster Ring, АЗ- арка номер три, BD8 - дефокусирующий магнит номер восемь, in – вход, centre- середина, out – выход, F- номер геодезического знака.

4.3 Геодезическое обеспечение измерений квадрупольных и секступольных линз для бустера NSLS-II

Квадрупольная, рисунок 3.15, и секступольная, рисунок 3.16, линзы – это электромагнитные элементы, для фокусировки пучков заряженных частиц с помощью магнитного поля квадрупольной и секступольной конфигурации.

Проведение магнитных измерений и привязка геодезических знаков к оси пучка осуществлена на двух специально изготовленных стапелях. На рисунке 3.17 изображены два стапеля с установленными на них магнитными элементами. Ближний стапель с квадрупольной линзой. Дальний стапель с секступольной линзой.

Стапеля изготовлены из стали, имеют жесткую конструкцию, исключающую возможные смещения измеряемых элементов в процессе измерения. Стапеля размещены на стенде магнитных измерений, установлены на резиновые площадки, чтобы минимизировать возможные вибрации. На базо-

Рисунок 3.15 – Квадрупольная линза

Рисунок 3.16 – Секступольная линза

вой поверхности стапеля в специальных направляющих были закреплены: жесткая подставка под API Laser Tracker 3, подставка для юстировки магнитного элемента, высокоточная направляющая для измерительной катушки, направляющие для шагового двигателя и угломера. Базовая поверхность стапеля имеет 12 геодезических знаков. Геодезические знаки представляют собой отверстия диаметром 6,35^{+0,01} мм, засверленные в теле стапеля перпендикулярно базовой поверхности с точностью 0,01 мм. Знаки расположены четырьмя группами по три знака в каждой вокруг магнитного элемента. Между собой в группе геодезические знаки разнесены на 100 мм, расстояния между группами ~700 мм. Жесткая подставка для API Laser Tracker 3 имеет возможность смещения около 400 мм перпендикулярно оси измеряемого магнитного элемента. Это сделано для того, чтобы выбрать наиболее точку установки подходящую для прибора, обеспечивающую видимость базовых поверхностей на катушке, геодезических знаков на стапеле и геодезических знаков на измеряемом магнитном элементе. Необходимо отме-

Рисунок 3.17 – Стапеля с квадруполем (ближний стапель) и секступолем (дальний стапель)

тить, что эти стапеля изготавливались как универсальные для разных типов и конструкции магнитных элементов. Подставка для юстировки магнитного элемента имеет шесть степеней свободы, позволяет опускать, поднимать элемент, наклонять, смещать параллельно и перпендикулярно стапелю. Диапазоны юстировки от 20 до 50 мм. Высокоточная направляющая для катушки предназначена для установки измерительной катушки с датчиками Холла, имеет жесткую фиксацию к стапелю. Направляющая задает ось, на которую впоследствии устанавливается магнитный элемент при помощи подставки для юстировки магнитного элемента. Направляющая для шагового двигателя и угломера позволяет установить шаговый двигатель и угломер на ось вращения катушки с датчиками Холла. При производстве геодезических измерений эти два элемента должны быть сняты со стапеля.

Квадрупольная линза имеет четыре геодезических знака, расположенных на двух специальных накладках. Накладки представляют собой металлические бруски, установленные на верхней половинке квадрупольной линзы. После установки бруски отшлифованы параллельно горизонтальной плоскости разъема квадрупольной линзы с заданным размером 207 \pm 0,05 мм. Полученная плоскость считается внешней базовой плоскостью квадрупольного элемента. Геодезические знаки представляют собой отверстия диаметром 6,35^{+0,02} мм, засверленные в теле накладок перпендикулярно базовой плоскости с точностью 0,01 мм.

Секступольная линза имеет пять геодезических знаков, расположенных на специальных накладках. Накладки установлены на внешнее железо при помощи специального штифта и двух болтов. Пять геодезических знаков установлены на пять полюсов линзы. На шестом полюсе она сама стоит на подставке. Геодезические знаки так же представляют собой отверстия ø 6,35^{+0,02} мм, засверленные в теле накладок.

Геодезические измерения для привязки магнитной оси катушки к внешним геодезическим знакам на линзах

Магнитный элемент (квадруполь или секступоль) устанавливается на магнитную ось катушки при помощи юстировочных узлов. Магнитная ось определяется с помощью датчиков Холла, расположенных на катушке. Вращение элемента вокруг катушки контролируется при помощи электронного уровня. После проведения магнитных измерений и определения магнитной оси элемента выполняются измерения трекером. Цель геодезических измерений: привязка положения магнитной оси элемента к внешним геодезическим знакам.

Трекер, установленный на жесткую подставку стапеля, измеряет положение геодезических знаков на стапеле. По этим знакам строится плоскость и задается система координат. Затем измеряется положение геодезических знаков, расположенных на магнитном элементе и доступное железо торца магнитного элемента (примерно 10-15 точек). После чего магнитный элемент снимается со стапеля. Так же со стапеля снимается шаговый двигатель с угломером и катушка с датчиками Холла. Вместо катушки укладывается специальная скалка, имеющая тот же диаметр, что и высокоточные подшипники катушки. При помощи режима Spatial Scan API Laser Tracker 3 сканируется положение скалки. По полученному облаку точек строится оптимальный цилиндр (средняя квадратическая погрешность оси скалки составляет 0,01 мм). На основании этого определяется ось оптимального цилиндра, которая так же является и осью катушки в системе координат стапеля. По измерениям на торцевые точки строится плоскость. Вычисляется точка пересечения оси катушки с плоскостью торца магнитного элемента. В этой точке строится новая система координат, где ось X направлена вдоль оси катушки, а ось Z перпендикулярна плоскости стапеля. Координаты геодезических знаков, расположенных на элементе, пересчитанные в новую систему координат, заносятся в паспорт. По данной методике были изготовлены все дипольные и секступольные линзы для бустера NSLS-II.

5 ГЕОДЕЗИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МОДЕРНИЗАЦИИ ИСТОЧНИКА СИНХРОТРОННОГО ИЗЛУЧЕНИЯ 4-го ПОКОЛЕНИЯ ESRF-EBS

5.1 Европейский источник СИ

(European Synchrotron Radiation Facility (ESRF))

На примере модернизации источника СИ ESRF до 4-го поколения рассмотрим современный зарубежный подход к задачам геодезического сопровождения.

Европейский источник СИ (European Synchrotron Radiation Facility (ESRF)) – один из самых высокоэнергетических в мире. Ускоритель работает с 1994 г. в круглосуточном режиме. Ежегодно на каналах вывода СИ проводят свои эксперименты около 7000 ученых со всего мира.

С 2015 г. стартовал проект модернизации источника СИ ESRF – EBS (Extremely Brilliant Source). Предполагается использовать 90 % существующей инфраструктуры. Периметр кольца составит 843,9 м. Модернизация позволит увеличить физические параметры пучка частиц во много раз. [65].

Геодезическое сопровождение требуется на всем этапе модернизации. Основные виды работ, в которых принимает участие геодезическая группа ESRF (ALGE):

- магнитные измерения (fiducialisation);

- горизонтирование гирдеров на сборочной линии;

 измерение базовых плоскостей гирдеров для создания локальной системы координат (ЛСК);

– определение базовых поверхностей датчиков положения пучка (ВРМ) для создания ЛСК и передачи координат на реперные знаки; установка системы диагностики и других элементов вакуумной камеры в проектное положение на этапе сборки;

– установка в проектное положение магнитных элементов источника СИ в локальной системе координат гирдера;

 установка в проектное положение вакуумной камеры в локальной системе координат гирдера;

 контроль положения магнитных элементов на гирдере после установки вакуумной камеры.

Ускорительная секция источника СИ ESRF – EBS состоит из четырех гирдеров с установленными магнитными элементами на них. Всего в кольце ускорителя будут расположены 32 ускоряющие секции, рисунок 3.18.

Для сборки ускоряющих секций было построено специальное здание, в котором параллельно на 12 гирдерах (четыре гирдера на трех линиях) устанавливаются электромагниты и вакуумные камеры.

Перед установкой на гирдер каждый элемент проходит этап магнитных измерений. В ESRF измерение характеристик интегралов и гармоник полей различных типов электромагнитов производят с помощью специальной сканирующей струны (stretch-wire measurement system).

Рисунок 3.18 – Ускоряющая секция источника СИ ESRF – EBS

Система состоит из гранитной плиты, на которой установлены приспособления и сервоприводы, перемещающие струну. На эту же плиту устанавливаются электромагниты. Геодезическая группа производит определение базовых поверхностей, фиксирующих струну. По этим базовым плоскостям строится система координат, определяющая геометрическую ось струны. В системе координат определяют положение геодезических знаков (fiducial), которые представляют собой посадочные места для 1,5-дюймового отражателя и установлены на верхних поверхностях электромагнитов, рисунок 3.19. По координатам геодезических знаков устанавливают ось электромагнита на гирдере в проектное положение. Все геометрические измерения проводят лазерными трекерами Leica AT 400-ой серии.

Для определения параметров пучка частиц в теле вакуумной камеры каждой ускоряющей секции установлены системы диагностики (ВРМ). Для установки их в проектное положение необходимо получить координаты геодезических знаков, расположенных на внешней части камеры. Сканированием базовых поверхностей систем диагностики на внутренней части камеры фиксируют локальную систему координат и измеряют положение знаков, рисунок 3.20. Геометрическую связь осуществляют лазерным трекером Leica АТ960 и устройствами сканирования T-probe и T-scan.

Гирдер ускоряющей секции, представляет собой твердое тело с четырьмя точками опоры, рисунок 3.21, б. Габариты гирдера: $5,1 \times 0,8$ м. Верхняя поверхность гирдера, на которую устанавливают магнитные элементы, определяет их вертикальное положение. Высотная отметка оси пучка относительно пола 1,199 м. Максимальная стрелка прогиба гирдера при его подъеме кран-балкой определяется в пределах 0,05 мм. Это обеспечивает стабильность установленных 5 ГЕОДЕЗИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МОДЕРНИЗАЦИИ ИСТОЧНИКА СИНХРОТРОННОГО ИЗЛУЧЕНИЯ 4-го ПОКОЛЕНИЯ ESRF-EBS _____

в проектное положение магнитных элементов на нем при транспортировке.

Перед установкой магнитных элементов гирдер горизонтируют. На каждой опоре установлены электродвигатели, позволяющие перемещать гирдер в вертикальной плоскости

Рисунок 3.19 – Определение координат реперных знаков элементов на стенде магнитных измерений ESRF: 1 – струна, определяющая ось магнитного элемента;

2 – электромагнит квадруполь;

3 – базовые поверхности, измеряемые для геометрического положения струны; 4 – геодезические знаки

Рисунок 3.20 – Процесс измерения ВРМ с помощью Leica T-probe

5.1 ЕВРОПЕЙСКИЙ ИСТОЧНИК СИ (EUROPEAN SYNCHROTRON RADIATION FACILITY (ESRF))

с шагом в 5 мкм. Процедуру горизонтирования контролируют лазерным трекером. Далее геодезическая группа проводит измерения для фиксации локальной системы координат. Верхняя базовая плоскость (определяющая ось *Z*), правая направляющая (ось *X*) и торец, перпендикулярный оси пучка (ось *Y*), являются определяющими для создания локальной системы координат ,рисунок 3.21, а. В этой ЛСК измеряют

Рисунок 3.21 – Гирдер источника СИ ESRT-EBS: а) система координат гирдера; б) общий вид гирдера без установленных элементов

Рисунок 3.22 – Шаблоны для юстировки магнитных элементов на гирдере: 1 – упор предварительной выставки; 2 – юстировочные болты; 3 – электромагнит геодезические знаки, установленные на гирдере (по пять знаков на каждой стороне). По этим знакам позиционируют лазерный трекер для установки в проектное положение элементов на этапе сборки, а при монтаже в тоннеле ускорительного комплекса устанавливают гирдер в проектное положение.

Предварительная установка и юстировка магнитных элементов на гирдер осуществляются с помощью специальных шаблонов, рисунок 3.22. Они фиксируются на направляющие гирдера штифтами. На шаблонах имеются специальные цилиндрические упоры, позволяющие предварительно устанавливать магнитные элементы с точностью ± 0,5 мм.

Установка в проектное положение, в соответствии с допусками, магнитных элементов осуществляется с применением лазерного трекера. Юстировочные болты на шаблонах позволяют установить элемент с точностью 0,01 мм относительно проектных координат. При установке в проектное положение С-образного дипольного магнита используется угломер для контроля поперечного угла.

После юстировки всех магнитных элементов производят демонтаж их верхних частей для установки и юстировки вакуумной камеры на гирдере. После закрытия верхних частей магнитных элементов производят контроль положения лазерным трекером. Величина зазоров между полюсами элементов и камерой, по технической документации, от 2 до 0,9 мм. Если отклонения положения геодезических знаков не превышают величины 20 мкм, гирдер подготавливают к транспортировке на место хранения.

Данные результаты укладываются в допуски на установку в проектное положение, определенное проектом модернизации, таблица 3.2. Система координат – в соответствии с рисунком 3.21 а. В таблице 3.3 указаны средние квадратические погрешности (СКП) положения элементов от этапа магнитных измерений до установки в кольце ускорителя по результатам измерений 70 гирдеров.

Тип магнитного	Допуск, мкм			
элемента	ΔS	ΔR	ΔZ	
Диполь с постоянным	1000	100	100	
полем				
Высокоградиентный	500	60	60	
квадруполь				
Квадруполь	500	100	85	
Секступоль	500	70	50	
Октуполь	500	100	100	

Таблица 3.3

Наименование	СКП по координатам, мкм.			
измерений	dx	dy	dz	
Магнитные измерения	13	22	40	
Создание ЛСК на гирдере	38	8	8	
Разборка / сборка верхних частей магнитных элементов	8	5	7	
Установка в проект на гирдере	126	29	31	
Контроль положения магнитов на гирдере	6	7	8	
Транспортировка	20	20	20	
Установка в проект в тоннеле	25	15	15	
Контроль положения в тоннеле	26	55	30	
Итоговая СКП	139	72	65	

Результаты положения элементов ускорителя, полученные после финальной юстировки, рассматривают как отклонения от проектного радиального и высотного направлений. Распределение погрешностей в кольцевых сетях ускорителей подчиняется гармоническому закону и может быть представлено в виде суммы гармоник Фурье. На рисунке 3.23 представлено положение элементов структуры источника СИ ESRF-EBS по результатам исполнительной съемки после финальной юстировки элементов до и после вычитания трех первых гармоник по радиальному направлению.

Пример модернизации источника СИ EBS-ESRF показывает объем контролируемого оборудования и количество геодезических работ, необходимых для достижения прецизионных параметров современных ускорительно-накопительных комплексов.

Рисунок 3.23 – Положение элементов структуры источника СИ ESRF-EBS: а) – результаты положения для радиального направления по результатам исполнительной съемки; б) после вычитания трех первых гармоник

Проектирование специальной геодезической сети тесно связано с проектированием самого ускорительного комплекса. Оно начинается, когда утверждена магнитная структура и известны параметры здания или тоннеля, в котором будет располагаться комплекс.

Исходными данными для проектирования специальной геодезической сети являются:

 таблицы допусков на установку в проектное положение каждого элемента магнитной структуры;

 – САD-модель здания или тоннеля, в котором располагается ускоритель;

- САD-модель магнитной структуры;

 – спектральная чувствительность к погрешностям установки в проектное положение магнитной структуры ускорителя.

Все эти данные формируются разработчиками ускорительного комплекса и передаются геодезической группе.

Далее геодезической группе необходимо определить инструментальный парк и типы измерительных приборов для производства работ. Методологическое обоснование решения выбора средств геодезических измерений при монтаже технологического оборудования рассмотрено в работе Хорошилова В. С. [93].

Основным элементом специальной сети является геодезический знак. От степени сложности конструкции зависит стоимость его производства. В то же время геодезический знак сети должен отвечать двум основным требованиям – сохранять свое положение в тоннеле или зале ускорительного комплекса на всем сроке эксплуатации ускорительного комплекса и иметь посадочные места для однозначной постановки сферического отражателя лазерного трекера. Кроме разработки геодезического знака сети, необходимо выбрать места его размещения на элементах магнитной структуры. От этого зависит эффективность производства геодезических измерений для мониторинга технологического оборудования ускорительного комплекса.

Места установки геодезических знаков выбираются так, чтобы не повлиять на работоспособность магнитного элемента и из расчета доступности и видимости для производства измерений при монтаже на гирдерный модуль, и в помещении ускорителя. Например, при прямоугольном сечении электромагнита с небольшими габаритами (длина до 2 м) для пространственного контроля положения достаточно трех знаков на верхней плоскости. При больших габаритах элемента геодезические знаки устанавливаются на каждой стороне электромагнита, чтобы обеспечить их видимость при монтаже.

На элементах магнитной структуры источника СИ ESRF-EBS выделена зона верхней части всех электромагнитов для установки геодезических знаков и электронного уровня. Такой подход обеспечивает доступность и видимость знаков в тоннеле ускорителя на весь срок эксплуатации, рисунок 4.1. Если элементы устанавливаются на гирдер, сам модуль также является носителем дополнительных знаков, которые используются при монтаже в тоннеле.

При проектировании СГС УНК можно оперировать двумя параметрами для ее оптимизации к требованиям установки в проектное положение магнитной структуры ускорительного комплекса – расстоянием между станциями лазерного трекера и расстоянием между знаками. Из-за ограничений пространством тоннеля все измерения сети представляют собой вытянутую форму, рисунок 4.2.

В соответствии с рисунком 2.23 видно, что визирный луч и выделенное контролируемое направление R находятся под большими углами друг к другу. Угловые погрешности вносят наибольший вклад в точность определения положения элемента магнитной структуры. Необходимо выбрать расстояние до отражателя, при котором угловые погрешности не превышают допусков на установку в проектное положение элементов ускорителя.

Расстояния между станциями лазерного трекера определяются зонами перекрытия окружностей, радиусами которых являются принятые максимальные расстояния до отражателя. Минимальное количество знаков в зонах перекрытия – четыре. Условие необходимости минимального количества знаков определено для качественной оценки погрешности ориентирования лазерного трекера в программном продукте Spatial Analyzer [113].

Рисунок 4.1 – Расположение геодезических знаков на элементах основного кольца ESRF-EBS

Рисунок 4.2 – Измерения в тоннеле ускорительного комплекса со станции лазерного трекера

Особенностью использования лазерных трекеров при производстве геодезических работ является необходимость наличия пространственной сети. Под пространственной сетью предлагается понимать геодезическую сеть, в которой положение ее знаков, по возможности, максимально описывает пространство вокруг измеряемого объекта как в плане, так и по высоте. Сети, в которых знаки расположены на одной линии или образуют длинный вытянутый треугольник, не дают однозначного решения при ориентировании прибора.

При модернизации специальной геодезической сети ВЭПП-4М для использования лазерного трекера на внутренней стене тоннеля были дополнительно закреплены знаки для сферического отражателя. Шаг между знаками по радиусу около 5–7 м, два последовательно расположенных знака разнесены на 1,2 м по высоте. Дополнительные знаки обеспечили достаточное их количество в зонах перекрытия между станциями, что является необходимым условием для связи измеренных полигонов в единой системе координат комплекса.

Места закрепления геодезических знаков в зале или тоннеле ускорительного комплекса выбираются из расчета видимости при производстве измерений с нескольких станций лазерного трекера и отсутствия расположения рядом других систем обеспечения работоспособности комплекса. Технологическое оборудование источников СИ располагается ближе к внешней стене тоннеля.

Внутренняя стена тоннеля позволяет закрепить последовательно расположенные знаки по азимуту на двух высотных отметках. Нижнее высотное положение следует выбирать около +0,5 м от уровня пола тоннеля, верхнее – около +2 м. Внешняя стена доступна для установки разряженной сети первого этапа, когда в тоннеле нет оборудования. При монтаже большая часть площади стены будет перекрыта как технологическим оборудованием ускорителя, так и другими коммуникациями (лотки кабелей, трубы дистиллята и пр.), рисунок 4.3. Зоны для установки знаков на этой стене необходимо определить на стадии проектирования ускорительного комплекса.

После определения конфигурации сети и количества станций производят математическое моделирование геодезических измерений лазерным трекером выбранного варианта сети для оценки точности [31, 95].

По полученным значениям СКП знаков сети производят спектральный анализ для определения величин амплитуд гармоник. Зная спектральную чувствительность УНК к погрешностям установки в проектное положение технологи-

Рисунок 4.3 – Зоны установки геодезических знаков в поперечном сечении тоннеля

ческого оборудования, на основе сравнительного анализа необходимо сделать заключение о возможности реализации данного варианта сети.

Основные аспекты современного подхода геодезического обеспечения для монтажа технологического оборудования источников синхротронного излучения заключаются в следующем:

 основанием для моделирования измерений в специальной геодезической сети являются исследования параметров эллипсоидов погрешностей определения отражателя и расчеты оптимальных секторов при монтаже технологического оборудования с применением лазерного трекера;

 – выполнение проектирования СГС в единой среде (САДпрограммы) с разработчиками уникального ускорительнонакопительного комплекса.

Схема построения СГС УНК приведена на рисунке 4.4.

Рисунок 4.4 – Схема построения специальной геодезической сети УНК Схема методики проектирвоания СГС УНК показана на рисунке 4.5.

Алгоритм расчета проектных координат, количества знаков сети специальной геодезической сети и станций лазер-

Рисунок 4.5 – Схема методики геодезического обеспечения для монтажа технологического оборудования источников синхротронного излучения (пунктиром обозначены новые блоки)

ного трекера для последующего моделирования измерений. Выделим основные этапы:

выбор системы координат. Система координат сети совпадает с системой координат ускорителя, в которой *R* – радиальное положение радиусных и прямолинейных участков орбиты ускорителя; *т* – горизонтальный угол положения элементов структуры ускорителя; *Z* – высотное положение;

 вычисление расстояний L₁ и L₂, где L₁ – максимальная длина при монтаже технологического оборудования УНК; L₂
максимальная длина при измерении знаков сети, при ориентировании лазерного трекера в систему координат, рисунок 4.6.

Рисунок 4.6 – Схема измерений со станции лазерного трекера при монтаже оборудования ускорительно-накопительного комплекса

Расчет расстояний L1, L2 для основного кольца источника СИ СКИФ:

$$L_1 = \sqrt{S^2 + B^2} = \sqrt{1,25^2 + 5,2^2} = 5,3 \text{ m};$$
 (4.1)

$$L_2 = \frac{L_1 \cdot m_{R,Z_{\text{fight}}}}{\sqrt{m_S^2 + m_{\beta,\nu}^2}} = 10,6 \,\text{i} \,, \tag{4.2}$$

– вычисление проектных координат СГС УНК. Радиальное положение соответствует радиусам внешнего и внутреннего стен тоннеля комплекса.

Азимутальный угол между знаками выбирается из расчета зоны перекрытия между станциями лазерного трекера с учетом требования минимального их количества. Вычисление азимутального угла производится по формуле:

$$\tau_{R_{1,2}} = \frac{\left(L_2 / 2\right) \cdot 180}{\pi \cdot R_{1,2}},\tag{4.3}$$

где R_1 – внешний радиус стены тоннеля; R_2 – внутренний радиус.

Знаки, условно принятые за первые, принадлежащие внешней и внутренней стене тоннеля, имеют одинаковый начальный азимутальный угол. Для равномерного распределения знаков необходимо задать начальные углы. В каждом проекте сети они выбираются индивидуально.

Высотное положение знаков при проектировании сети ускорительного комплекса следует оптимально установить +0,5 м от пола – для условно первого знака на стене тоннеля внешнего радиуса и +2 м – для второго и далее с чередованием. Для первого знака на стене внутреннего радиуса +2 м и +0,5 м для второго и далее с чередованием;

 вычисление общего количества знаков производится по формуле

$$N = \frac{360}{\tau_{R_1}} + \frac{360}{\tau_{R_2}}; \tag{4.4}$$

– определение координат положения станций инструмента. Радиальное положение:

$$R_{\rm cr.} = R - 1,$$
 (4.5)

где R – радиальное положение орбиты пучка частиц, м. Угол между станциями вычисляется по формуле:

$$\tau_{\rm ct.} = \frac{L_2 \cdot 180^0}{\pi \cdot R_{\rm ct.}}.$$
 (4.6)

5.2 Инженерно-геодезическое обеспечение стадий и способов монтажа физического оборудования ускорителей

Геометрические параметры орбиты заданы физическим проектом для установки. Проектная орбита бустера определена точками вход, середина и выход из элемента в единой системе координат, рисунок 4.7. Каждая точка помимо трех координат (X,Y,Z) имеет уникальное имя в данной структуре. Эти данные используются как основа для сборки структуры бустера.

Рисунок 4.7 Расположение элементов на проектной орбите бустера.

Для каждого элемента выполняется ориентирование измерений занесенных в паспорт к проектным координатам орбиты, по уникальным именам и координатам X, Y, Z трех точек (вход, середина, выход) таким образом, чтобы сумма квадратов отклонений была минимальна. Вместе с орбитой трансформируются все результаты обмеров внешних геодезических знаков. После сборки получаем проектный каталог координат всех измеренных точек на магнитных элементах в проектной структуре бустера.

Сборка всего кольца с окончательной выставкой элементов на гирдерах в системе координат бустера была произведена в Новосибирске. Размер площадки на которой была выполнена сборка 10х10 метров. Напомним, что периметр кольца 158.39 метра.

На гирдер устанавливаются все элементы. Юстировочные узлы предварительно установлены в среднее положение. При помощи лазерного трекера API Laser Tracker 3 выполняется съемка геодезических знаков на магнитных элементах (дипольные магниты и квадрупольные линзы). Измеренные координаты геодезических знаков на магнитных элементах накладываются на проектный каталог координат, таким образом, чтобы сумма квадратов отклонений была минимальна. Этой манипуляцией мы привели API Laser Tracker 3 в проектную систему координат. Так как элементы были просто собраны на гирдере в среднем положении юстировочных узлов, то отклонения их от проекта может достигать 1 мм и более. Переводим лазерный трекер в режим показывающий отклонения от проектных координат и с помощью юстировочных винтов на гирдере устанавливаем элементы окончательно на проектные координаты. Из-за конструктивных особенностей для каждого гирдера приходилось делать 2 станции API Laser Tracker 3, рисунок 4.8. После фиксации

5 ГЕОДЕЗИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МОДЕРНИЗАЦИИ ИСТОЧНИКА СИНХРОТРОННОГО ИЗЛУЧЕНИЯ 4-го ПОКОЛЕНИЯ ESRF-EBS _____

юстировочных винтов выполнялась исполнительная съемка элементов установленных на гирдере. Для контроля выполнялось наложение всех выставленных элементов на проектный каталог координат, если среднеквадратическое отклонение превышало 0.1 мм юстировка повторялась.

Готовые гирдерные сборки упаковывались и отправлялись в США. На месте выполнялась проверка взаимного положения элементов на гирдере. В результате выяснилось, что за время транспортировки элементы не изменили своего положения, что позволило быстро смонтировать кольцо бустера устанавливая только гирдера целиком.

Рисунок 4.8 Измерения магнитных элементов на гирдере
6 ГАРМОНИЧЕСКИЙ АНАЛИЗ ДАННЫХ ГЕОДЕЗИЧЕСКИХ ИЗМЕРЕНИЙ ДЛЯ ПАРАМЕТРОВ УСКОРИТЕЛЯ ЗАРЯЖЕННЫХ ЧАСТИЦ

6.1 Учет природы возникновения гармонических колебаний частиц УНК

Технологический процесс работы ускорительно-накопительного комплекса протекает в гармоническом режиме.

Для циклических ускорителей в устойчивой периодичной фокусирующей системе частица совершает колебания около положения равновесной орбиты. Поперечные колебания частиц называют бетатронными, а число этих колебаний на длине оборота v-бетатронной частотой. Анализ показывает, что в кольцевых ускорителях неидеальности поля приводят к раскачке колебаний и возникновению поперечных резонансов. Поэтому возмущение, вызванное ошибкой установки магнитных элементов не должно содержать гармонических функций с частотами, близкими к частоте бетатронных колебаний.

Бустер NSLS-II имеет периметр орбиты 158,4 м. и расчетную бетатронную частоту v=9,645. Расчет спектральной чувствительности структуры бустера показывает, что 10-я гармоника наиболее критична для работы ускорителя, рисунок 4.9. Длина бетатронной волны и длина волны 10-й гармоники для структуры бустера составит около 16 м. Если создать для бустера модуль с магнитной структурой, где целое число элементов периодичности укладывается на длине волны бетатронных колебаний, это будет единичная структура. Тогда весь ускоритель можно представить из единич-

6 ГАРМОНИЧЕСКИЙ АНАЛИЗ ДАННЫХ ГЕОДЕЗИЧЕСКИХ ИЗМЕРЕНИЙ ДЛЯ ПАРАМЕТРОВ УСКОРИТЕЛЯ ЗАРЯЖЕННЫХ ЧАСТИЦ

ных участков и неединичного участка для получения нецелого v. Траектория ускорителя установленная из единичных участков может позволить существенно снизить требования к положению магнитной структуры относительно расчетной равновесной орбиты.[49]

Рисунок 4.9 – Спектральная чувствительность магнитной структуры бустера NSLS-II

Длина магнитной структуры бустера, расположенной на четырех модулях составит около 16 м, тогда при относительной юстировке этих модулей с точностью ~ 0,15 мм. их можно принять близкими к единичной структуре. Движение частицы из точки 0 с нулевым углом и координатой относительно идеальной орбиты сформирует искаженную равновесную орбиту, точно проходящую через точки совмещения концов единичных участков, рисунок 4.10. Искажение орбиты внутри участков определяется их углом к идеальной орбите, а максимальное искажение относительно оси участка определяется как

$$y_{\max} = \frac{S_i - S_{i-1}}{2\pi}$$
(4.7)

Так как допустимые искажения составляют около 2 мм., величины могут быть около 10 мм. При этом концы единичных участков должны быть совмещены с точностью ~ 0,1 мм. [49]

Рисунок 4.10 – Схема построения структуры бустера из единичных участков, состоящих из четырех модулей

В случае подхода к юстировке как обычной структуры модульный способ сборки также сохраняет преимущества высоких положительных коэффициентов корреляции ошибок юстировки, т.к. на длине модуля укладывается ~ $\frac{1}{4}\lambda_{dem}$.

Сглаживающая кривая должна так аппроксимировать результаты измерений, чтобы число необходимых подвижек элементов было минимальным и, что более существенно, вызывать наименьшие искажения орбиты. Сглаживающая кривая строится как сумма гармоник Фурье, к которым магнитная структура наименее чувствительна. Спектральная чувствительность γ_k к гармонике возмущения k есть наибольшая величина относительного отклонения искаженной замкнутой орбиты при воздействии возмущения с единичной амплитудой [30]. Если возмущение это сумма *n* гармонических функций, тогда оценка максимального искажения будет:

$$y_{\max} = \sum_{k=1}^{n} (\gamma_k a_k),$$
 (4.8)

Гармонику следует считать критичной, если произведение амплитуды гармоники на соответствующий коэффициент спектральной чувствительности вносит вклад (10-15 %) в искажение орбиты частиц от допустимого, которое принимается как 1/10 минимального размера вакуумной камеры. Для некритичной гармоники должно выполняться равенство: $a_k \le 0.1 y_{don} / \gamma_k$.

При построении сглаживающей кривой на практике выполняется следующее. Проводится цикл геодезических измерений по определению положения элементов структуры ускорителя. Измерения обрабатываются, находятся отклонения элементов от проектного положения ΔR_i , далее вычисляются амплитуды гармоник, проводится Фурье-анализ результатов по формуле:

$$a_k = \sqrt{c_k^2 + b_k^2}$$
, (4.9)

где
$$c_k = \frac{2}{n} \sum_{i=1}^{n} \Delta R_i \cos(\frac{2\pi k S_i}{P_0});$$

 $b_k = \frac{2}{n} \sum_{i=1}^{n} \Delta R_i \sin(\frac{2\pi k S_i}{P_0});$
 P_0 – периметр установки;
 n – число точек;
 S_i – текущая продольная координата точки i .
148

Далее для получения сглаживающей кривой нужно последовательно суммировать гармоники с номерами k=0,1,2..., одновременно вычисляя сумму, пока расчетное искажение орбиты не превысит допустимое. Полученная сумма некритичных гармоник сформирует сглаженную кривую.

Спектральная чувствительность бустера NSLS-II показана на рисунке 4.9, а на рисунке 4.11 спектральный состав погрешностей определения плановых координат в геодезической сети бустера NSLS-II. Рассматривая значения спектральной чувствительности видно, что они растут с увеличением номера гармоники, имея первый максимум при k=6 и второй при k=10. Амплитуды погрешностей определения плановых координат имеют наибольшие значения при k=0,1,2.

Это значит, что в сети недостаточно хорошо определяется масштаб или неопределенность среднего диаметра кольца составляет ±0,5 мм (нулевая гармоника), а неопределенность радиусов двух полуколец составляет ±0,2 мм (первая гармоника) и отличие двух перпендикулярных диаметров от их номинала можно определить не точнее ±0,2 мм. Максимальное допустимое искажение орбиты y_{dw} =2 мм; допуск на амплиту-

Рисунок 4.11 – Спектральный состав погрешностей определения плановых координат во вторичной сети бустера NSLS-II

ды 1 и 2 гармоники составит; $a_1 = 0.1 \times y_{don} / \gamma_1 = 0.1 \times 2/0.2 = 1$ мм и $a_2 = 0.1 \times 2/0.3 = 0.67$ мм.

Каждая гармоника имеет влияние на орбиту пучка частиц $a_k \times \gamma_k$, и от того, сколько и какие гармоники входят в состав сглаживающей кривой $u = \sum a_k \times \gamma_k$ зависит величина искажений орбиты, рисунок 4.12.

Гармоника № 6 является первой критичной. Формально до двадцатой гармоники включительно рубеж максимального искажения орбиты в 2 мм не достигнут. Но из-за того, что для реальных магнитных структур резонансными являются не только гармоники, близкие к частоте бетатронных колебаний, но и суммовые и разностные, включать в состав сглаживающей кривой рекомендуется только гармоники до первой критичной. Следовательно, сглаживающая кривая может включать в себя гармоники с нулевой по пятую влючительно.

Рисунок 4.12 – График зависимости искажений орбиты бустера NSLS-II от гармоник возмущения, вызванных погрешностями юстировки

6.2 Моделирование геодезических измерений программными продуктами Spatial Analyzer и PANDA

В исследовании рассмотрено уравнивание результатов моделирования измерений спроектированной сети и результатов измерений сети ускорительного комплекса ВЭПП-4М, проведенных в сентябре 2019 г.

Средний периметр спроектированной сети для исследования составил 52,5 м. Выбранная величина периметра позволяет произвести уравнивание в программном продукте Spatial Analyzer по данным измерений с каждой станции лазерного трекера (измеренные углы и длины линий) и сравнить результаты двух программных продуктов. Радиальное положение знаков: внутренний радиус 7 м, внешний 10 м. Центр окружностей принадлежит центру системы координат. Знаки на внутреннем радиусе именуются GR-1, 2..., на внешнем – GL-1, 2.... Все знаки, принадлежащие внутреннему радиусу, имеют нулевую отметку; первый знак внешнего радиуса +0,5 м, второй +2 м и далее с чередованием. Ось Z системы координат направлена вверх. Ось Х направлена на знаки GR1 и GL1. Ось У дополняет систему до правосторонней. Азимутальный угол между знаками для внешнего радиуса 15°, внутреннего – 40°.

Моделирование измерений произведено в модуле Measurement Simulation программного продукта Spatial Analyzer. Результаты измерений были экспортированы в PANDA для уравнивания. В Spatial Analyzer данные уравнены с помощью функции USMN.

Количество знаков в сети – 33. Количество станций лазерного трекера – 9. Количество измеренных углов – 180, расстояний – 90. Линейно-угловые погрешности измерений с каждой станции лазерного трекера указаны в таблице А.1 приложения А. Схема измерений сети в программных продуктах Spatial Analyzer и PANDA приведена на рисунке 4.13.

Рисунок 4.13 – Схема измерений сети периметром 52,5 м: а) в программном продукте Spatial Analyzer; б) в программном продукте PANDA

СКП положения знаков по трем координатам в сети по результатам уравнивания в SA 0,020 мм, в PANDA – 0,048 мм. Максимальная погрешность определения координат знака сети со станции в Spatial Analyzer составила 0,080 мм (GL3), в PANDA – 0,067 мм (GL13).

Для сравнения результатов уравнивания реальных измерений лазерного трекера был взят цикл 2019 г. специальной геодезической сети комплекса ВЭПП-4М. За исходные данные взяты проектные координаты положения геодезических знаков в системе комплекса. Координаты Z в исходных данных – высотные отметки по результатам высокоточной нивелирования 2019 г. [25, 28, 62, 112]. Общее количество геодезических знаков – 94. Количество станций лазерного трекера – 27.

Уравнивание в Spatial Analyzer производилось функцией USMN по координатам геодезических знаков. В программном продукте PANDA – по данным измеренных углов и расстояний.

Координаты знаков сети, полученные по результатам уравнивания, были сориентированы к проектным координатам по методу наименьших квадратов. СКП положения знаков по результатам уравнивания относительно исходных указаны в таблице 4.1.

Таблица 4.1

Источник данных	Х, мм У, мм		<i>Z</i> , мм	
уравнивания				
SA	0,969	1,336	0,145	
PANDA	1,040	1,280	1,311	

Отклонения координат знаков, полученных по результатам уравнивания обоих программных продуктов, в плане отличаются незначительно. Отклонения порядка 1–1,5 мм вызваны деформациями тоннеля за период эксплуатации ускорительного комплекса [49, 53].

Как и в Spatial Analyzer, результаты уравнивания по данным измерений углов и расстояний в PANDA оказались неудовлетворительны для высотного положения знаков. Разработчик Geodetical Technologies указал на необходимость загрузки дополнительного файла с результатами измерений цифровым нивелиром [89]. В случае отсутствия результатов измерений цифровым нивелиром, уравнивание необходимо проводить по методике тахеометрических ходов. СКП высотного положения по результатам уравнивания в SA отно6 ГАРМОНИЧЕСКИЙ АНАЛИЗ ДАННЫХ ГЕОДЕЗИЧЕСКИХ ИЗМЕРЕНИЙ ДЛЯ ПАРАМЕТРОВ УСКОРИТЕЛЯ ЗАРЯЖЕННЫХ ЧАСТИЦ

сительно результатов нивелирования того же года составила 0,145 мм.

Для сетей крупных ускорительных комплексов, таких как ВЭПП-4М с периметром 366 м, использование программных продуктов Spatial Analyzer и PANDA является допустимым с учетом выявленных особенностей. Преимуществом PANDA является уравнивание данных измерений углов и расстояний, однако необходимо произвести исследование корректности уравнивания данных лазерного трекера по методике тахеометрического хода. Уравнивание в Spatial Analyzer по координатам корректно при наличии данных нивелирования произведенного в тот же период, что и измерения сети лазерным трекером.

Произведены расчеты и моделирование геодезических измерений трех вариантов сети для тоннеля со средним периметром 282,7 м [66]. Кольцо с радиусом 45 м является аналогом тоннеля комплекса ВЭПП-4М без прямолинейных

Рисунок 4.14 – Недоступные зоны измерений вертикального угла лазерного трекера API для выбранной высоты тоннеля 4 м

вставок. Габариты тоннеля: высота 4 м, ширина 3 м, радиус внутренней стены 43,5 м, радиус внешней стены 46,5 м.

Для используемых в ИЯФ СО РАН лазерных трекеров фирмы API диапазон измерения вертикального угла относительно горизонта прибора + 79° и - 59°. Это обуславливает наличие недоступных зон для производства измерений. Размеры зон для тоннеля высотой 4 м указаны на рисунке 4.14.

Произведен расчет проектных координат для трех вариантов сети по алгоритму, рассмотренному в главе 4. В каждом варианте изменялись расстояния между знаками и станциями лазерного трекера. Проектные координаты загружались в Spatial Analyzer. Сеть разделялась на сегменты по 8 знаков + станция, для моделирования измерений лазерным трекером с использованием модуля Measurement Simulation. Уравнивание полученных данных производилось в модуле USMN. Полученные уравненные значения координат были сориентированы к проектным по методу наименьших квадратов.

Величины СКП по радиальной и высотной координатам высчитывают относительно проектных значений. Спектральный анализ погрешностей положения знаков геодезической сети на этапе проектирования позволяет выбрать наилучшую схему измерений. Для определения величин амплитуд погрешностей положения знаков сети (a_k) в поперечных направлениях движению пучка (R, Z) произведен гармонический анализ для каждого варианта [38]. Характеристики проектируемых сетей представлены в таблице 4.2.

6 ГАРМОНИЧЕСКИЙ АНАЛИЗ ДАННЫХ ГЕОДЕЗИЧЕСКИХ ИЗМЕРЕНИЙ ДЛЯ ПАРАМЕТРОВ УСКОРИТЕЛЯ ЗАРЯЖЕННЫХ ЧАСТИЦ _____

Таблица 4.2

Вариант Коли- СГС чество		Расстояние между знаками (м)		Центральные углы (°)		Коли- чество
	знаков в сети	Внеш- ний радиус	Вну- тренний радиус	Внеш- ний радиус	Вну- тренний радиус	станций лазер- ного трекера
1	112	8,3	7,8	6,4	6,3	28
2	162	3,6	3,3	4,4	4,3	41
3	378	1,5	1,4	1,9	1,8	95

Высотное положение знаков: первый знак внешнего радиуса на отметке +0,5 м, второй +2,5 м и далее с чередованием; на внутреннем радиусе первый знак на отметке +2,5 м, второй +0,5 м и далее с чередованием. Положение знаков по высоте одинаковы для всех вариантов сети.

Схема измерений лазерным трекером в первом варианте сети в Spatial Analyzer представлена на рисунке 4.15.

Уравнивание специальной геодезической сети в Spatial Analyzer с использованием функции USMN для сети варианта № 1 дало следующие результаты: СКП положения знака по результатам измерений одного цикла 0,015 мм; отклонение от проектных координат – 0,27 мм.

Рисунок 4.15 – Графическое отображение в Spatial Analyzer смоделированных измерений для варианта сети № 1 с шагом между станциями 10 м

Для удобства анализа СКП все результаты были рассмотрены в цилиндрической системе координат. На графиках представлены отклонения измеренных значений положения геодезических знаков сети по радиальному и вертикальному направлениям до уравнивания и после, рисунки 4.16, 4.17.

⁻⁻⁻⁻ R1 уравненные - · · R2 уравненные - - R1 измерения · · · · R2 измерения

Рисунок 4.16 – График радиальных отклонений от проектных для варианта сети № 1, где R1 уравненные – для знаков внешнего радиуса тоннеля после уравнивания; R2 уравненные – для знаков внутреннего радиуса; R1 измеренные – для знаков внешнего радиуса тоннеля до уравнивания; R2 измеренные – для знаков внутреннего радиуса до уравнивания

Рисунок 4.17 – График отклонений по Z координате от проектных для варианта сети № 1

Резонансными гармониками для ускорительных комплексов являются близкие к частоте бетатронных колебаний, а также суммарные и разностные гармоники числу магнитных элементов, суперпериодов.

Гармонический анализ полученных погрешностей измерений сети показал наибольшие амплитуды у первых трех гармоник. Особо стоит отметить отсутствие амплитуды первой гармоники погрешностей после уравнивания. На графиках для варианта сети № 1 представлены величины амплитуд погрешностей первых 20 гармоник для знаков сети варианта № 1 до и после уравнивания, рисунки 4.18–4.21.

Рисунок 4.18 – График спектрального состава погрешностей измерений знаков в радиальном направлении до уравнивания, где R_{внеш 1}, R_{внеш 2} – знаки, принадлежащие внешнему радиусу тоннеля с высотными отметками +0,5 и +2,5 м; R_{внутр 1}, R_{внутр 2} – на внутреннем радиусе с высотными отметками +2,5 и +0,5 м

6.2 МОДЕЛИРОВАНИЕ ГЕОДЕЗИЧЕСКИХ ИЗМЕРЕНИЙ ПРОГРАММНЫМИ ______ ПРОДУКТАМИ SPATIAL ANALYZER И PANDA

🖾 R1 🖾 R2

Рисунок 4.19 – График спектрального состава погрешностей измерений знаков в радиальном направлении после уравнивания, где R_1 – все знаки на внешнем радиусе, R_2 – на внутреннем радиусе

🖾 Z внеш 1 🗖 Z внеш 2 🖾 Z внутр 1 🗖 Z внутр 2

Рисунок 4.20 – График спектрального состава погрешностей измерений знаков в вертикальном направлении до уравнивания, где $Z_{_{внеш\,1}}, Z_{_{внеш\,2}}$ – знаки, принадлежащие внешнему радиусу тоннеля с высотными отметками +0,5 и +2,5 м; $Z_{_{внутр\,1}}, Z_{_{внутр\,2}}$ – на внутреннем радиусе с высотными отметками +2,5 и +0,5 м Схема геодезических измерений сети лазерным трекером для варианта № 2 представлена на рисунке 4.22.

Отклонения координат, полученных после уравнивания, от проектных значений для R и Z показаны на рисунке В.1 приложения В. СКП положения знака по результатам измерений одного цикла – 0,011 мм, отклонение от проектных координат – 0,21 мм.

Рисунок 4.21 – График спектрального состава погрешностей измерений знаков в вертикальном направлении после уравнивания, где

Рисунок 4.22 – Схема измерений проектируемой сети, вариант № 2

Спектральный состав погрешностей показал максимальные величины амплитуд первых трех гармоник для *R* и первых четырех для *Z*. Так как величины амплитуд для знаков внешнего и внутреннего радиуса и высотных отметок +0,5 и +2,5 м одинаковы, на графиках указана одна общая, рисунки 4.23, 4.24.

[🖾] R измерения 🖾 R уравненные

Рисунок 4.23 – График спектрального состава погрешностей измерений знаков сети для радиального направления варианта сети № 2

[🖾] Z измерения 🖾 Z уравненные

6 ГАРМОНИЧЕСКИЙ АНАЛИЗ ДАННЫХ ГЕОДЕЗИЧЕСКИХ ИЗМЕРЕНИЙ ДЛЯ ПАРАМЕТРОВ УСКОРИТЕЛЯ ЗАРЯЖЕННЫХ ЧАСТИЦ _____

Схема измерений сети лазерным трекером для варианта № 3 представлена на рисунке 4.25.

Отклонения координат, полученных после уравнивания, от проектных значений для R и Z показаны на рисунке В.1 приложения В. СКП положения знака по результатам измерений одного цикла – 0,005 мм, отклонение от проектных координат – 0,16 мм.

Рисунок 4.25 – Графическое отображение в Spatial Analyzer смоделированных измерений для варианта сети № 3 с шагом между станциями 3 м

Максимальные величины амплитуд для радиального направления включают первые три гармоники, как и в предыдущих вариантах, рисунок 4.26. Для Z $a_k \ge 0,05$ мм, где k = 1, 2, 4, 5, рисунок 4.27.

Гармонический анализ показал, что при увеличении расстояний между знаками величина амплитуды первой гармоники уменьшается для *R*. Для *Z* наблюдается обратный эффект, однако, в варианте сети № 3 амплитуда гармоники k = 5 проявляет себя на уровне величины 0,05 мм. Таким образом, оптимальным вариантом для выбора сети является вариант из комбинации расстояний между знаками сети из варианта № 1 и шагом между станциями как в варианте № 2.

Погрешность определения координат знаков сети по направлениям *R* и *Z* для трех вариантов сети является удовлетворительной. Это связано с отсутствием требования на взаимное положение магнитных элементов, находящихся на

🖾 R измерения 🖾 R уравненные

[🖾] Z измерения 🖾 Z уравненные

диаметрально противоположных сторонах периметра сети. Из таблицы 4.3 видно, что СКП положения знаков для контролируемых направлений минимальны для варианта № 3, однако это самый неоптимальный с точки зрения производства геодезических работ вариант из-за большого количества станций лазерного трекера.

Таблица	4.3
---------	-----

Вариант построения	Средние квадратические погрешности,			
сети	MM			
	m_{R}	m_{z}		
1	0,11	0,24		
2	0,16	0,12		
3	0,09	0,12		
Предлагаемый вариант построения СГС	0,11	0,12		

6.3 Проектирование специальной геодезической сети источника синхротронного излучения четвертого поколения СКИФ

Источник синхротронного излучения СКИФ (Сибирский Кольцевой Источник Фотонов) является первым реализуемым проектом центров коллективного пользования (ЦКП) – объектов мультидисциплинарной исследовательской инфраструктуры, обеспечивающих проведение научных исследований в различных областях науки и техники от материаловедения до медицины. Эффективный срок работы такого центра 25–30 лет. Расположение ЦКП СКИФ планируется недалеко от Государственного центра вирусологии и биотехнологий «Вектор» в поселке Кольцово Новосибирской области.

6.3 ПРОЕКТИРОВАНИЕ СПЕЦИАЛЬНОЙ ГЕОДЕЗИЧЕСКОЙ СЕТИ ИСТОЧНИКА ______ СИНХРОТРОННОГО ИЗЛУЧЕНИЯ ЧЕТВЕРТОГО ПОКОЛЕНИЯ СКИФ

Проектируемый ускоритель будет состоять из линейного ускорителя электронов на 200 мегаэлектронвольт (МэВ) длиной 25 м; накопительного кольца бустера с максимальной энергией 3 гигаэлектронвольт (ГэВ) периметром 158 м; транспортных каналов ввода-вывода пучка; основного кольца синхротрона с энергией 3 ГэВ и периметром 476 м; 6 пользовательских станций с каналами вывода СИ (1-я очередь до 2024 г.), рисунок. 4.28.

Линейный ускоритель предназначен для формирования последовательности пучков электронов требуемой интенсивности и модуляции. Проектирование линака базируется

Рисунок 4.28 – Концептуальная схема основных компонентов источника СИ СКИФ с изображением одного суперпериода магнитной структуры основного кольца

6 ГАРМОНИЧЕСКИЙ АНАЛИЗ ДАННЫХ ГЕОДЕЗИЧЕСКИХ ИЗМЕРЕНИЙ ДЛЯ ПАРАМЕТРОВ УСКОРИТЕЛЯ ЗАРЯЖЕННЫХ ЧАСТИЦ _____

на основе разработок инжекционного комплекса ВЭПП-5 ИЯФ СО РАН.

Бустер источника СИ СКИФ будет аналогом бустера NSLS-II (Брукхевенская Национальная Лаборатория США) [114, 115].

Основное кольцо состоит из 18 симметричных ускоряющих секций (суперпериодов). Каждый суперпериод состоит из «ячеек» – гирдерных модулей с установленными на них элементами оптической структуры ускорителя. В одном суперпериоде 7 «ячеек» – последовательно расположенный набор электромагнитов оптической структуры ускорителя для фокусировки пучка частиц и вывода СИ.

В составе суперпериода: 1 «ячейка» вывода жесткого рентгена; 4 базовые «ячейки»; 2 – без дисперсионной «ячейки». Все элементы суперпериода располагаются на 5 гирдерах, рисунок 4.29.

Количество элементов оптической структуры основного кольца: дипольных электромагнитов – 144; квадрупольных линз – 256; секступольных линз – 256. Количество выводов синхротронного излучения 30, 14 – из прямолинейных промежутков, 16 – из магнитных элементов.

Рисунок 4.29 – Суперпериод с указанием оптических функций

6.3 ПРОЕКТИРОВАНИЕ СПЕЦИАЛЬНОЙ ГЕОДЕЗИЧЕСКОЙ СЕТИ ИСТОЧНИКА ______ СИНХРОТРОННОГО ИЗЛУЧЕНИЯ ЧЕТВЕРТОГО ПОКОЛЕНИЯ СКИФ

Физиками ИЯФ СО РАН были проведены расчеты чувствительности пучка частиц, двигающихся по замкнутой кольцевой орбите в основном накопительном кольце, при смещении элементов оптической структуры от проектного значения (ошибки выставки элементов). Для монтажа магнитной структуры источника четвертого поколения СКИФ проектные допуски приведены в таблице 4.4.

Таблица 4.4

Название технологического оборудования	Допуск, мм		
Квадрупольные линзы	0,03–0,05		
Гирдер	0,07		

Частота бетатронных колебаний 17,6. С учетом количества суперпериодов 16, можно предположить, что макси-

Рисунок 4.30 – Расчет эффективности работы алгоритма коррекции орбиты после захвата пучка частиц в основном кольце в радиальном и высотном направлениях

6 ГАРМОНИЧЕСКИЙ АНАЛИЗ ДАННЫХ ГЕОДЕЗИЧЕСКИХ ИЗМЕРЕНИЙ ДЛЯ ПАРАМЕТРОВ УСКОРИТЕЛЯ ЗАРЯЖЕННЫХ ЧАСТИЦ _____

мальные амплитуды возмущения будут принадлежать гармоникам, кратным 16-18.

Точность установки в проектное положение всех элементов позволяет провести частицы из бустерного синхротрона и захватить их оптической структурой основного кольца. После захвата начинает работать алгоритм коррекции пучка. Результаты расчета работы алгоритма с искаженной орбитой приведены на рисунке 4.30.

Возмущения, вызванные погрешностями установки в проектное положение элементов и гирдеров в пределах определенных допусков, влияют на положение пучка на первых 200 м после инжекции в основное кольцо. Далее орбита стабилизируется коррекциями оптической структуры.

6.4 Реализация методики геодезического обеспечения для источника СИ четвертого поколения СКИФ

На основании полученных данных и CAD-модели суперпериода были произведены расчеты для специальной геодезической сети источника СИ СКИФ. Так как проект здания на момент проведения исследований отсутствовал, предложенный вариант сети будет дорабатываться в соответствии с разработкой проекта УНК.

Габариты тоннеля основного кольца источника СИ СКИФ взяты из расчета удобства расположения оборудования, станций лазерного трекера и геодезических знаков в нем. Внешний радиус стены тоннеля 76,78 м, внутренний – 73,28 м. Через три точки заданного радиуса суперпериода была построена окружность (две крайние точки входа и выхода, принадлежащие прямолинейным промежуткам, и центральная точка суперпериода). Эта окружность является орбитой пучка в первом приближении. Относительно нее выбирается положение станций лазерного трекера.

Параметры проектных данных специальной геодезической сети СКИФ указаны в таблице 4.5. Для высотных отметок знаков, как и во всех рассмотренных ранее вариантах сетей, предлагается асимметричное расположение на стенах тоннеля. Последовательно расположенные знаки будут иметь отметки -1 и +1 м относительно плоскости орбиты. Всего количество знаков для предложенного варианта сети составило 205 шт.

Таблица 4.5

Коли-	Центральные		Коли-	L_2	Средние	е квадра-
чество	углы (°)		чество	(м)	тичесь	кие по-
знаков			станций		грешно	сти (мм)
в сети	Внеш-	Вну-	лазер-		m _p	m_{τ}
	ний	тренний	ного		K	L
	радиус	радиус	трекера			
205	3,43	3,59	40	12	0,32	0,13

На рисунке 4.31 показана схема измерений при установке в проектное положение и исполнительной съемке гирдеров с магнитными элементами.

Таким образом, выбранный радиус измерений со станции позволяет контролировать положение элементов практиче-

Рисунок 4.31 – Схема измерений со станции лазерного трекера для монтажа гирдерных модулей источника СИ СКИФ

ски всего суперпериода с одной станции. Для качественной оценки рекомендуется производить измерения с нескольких станций лазерного трекера. В предложенной схеме пять станций лазерного трекера устанавливаются между гирдерными модулями суперпериода. Такое избыточное количество станций необходимо только на этапе монтажа оборудования, в процессе эксплуатации возможно использовать схему измерений геодезической сети ускорителя.

Для повышения производительности труда расстояние между станциями лазерного трекера предлагается выбрать 12 м. При этом относительно большая длина визирного луча увеличит погрешность измерений со станции на 14 % из-за включения в зоны перекрытий удаленных знаков. Однако это влияет на СКП определения координат знаков по всему кольцу, и не влияет на орбиту пучка частиц. Уменьшение количества станций с 51 для $L_2 = 10,6$ м до 40 для $L_2 = 12$ м существенно сокращает временные затраты на измерения сети.

Схема измерений геодезической сети показана на рисунке 4.32. Измерения с трех станций лазерного трекера перекрывают длину одного суперпериода.

Отклонения от проектных координат по радиальному направлению – 0,32 мм, по вертикальному – 0,13 мм, таблица 4.5. Гармонический анализ результатов приведен на рисунках

Рисунок 4.32 – Схема измерений геодезической сети СКИФ основного кольца

4.33, 4.34. СКП ориентирования станции для проведения работ установки в проектное значение гирдерных модулей по 6 знакам сети 0,015 мм.

При наличии всех необходимых проектных данных тоннеля и магнитной структуры ускорителя появится возможность определить зону расположения знаков на внешней стене тоннеля, рисунок 4.3.

На основании выполненных исследований по уравниванию измерений в специальных геодезических сетях (реальных, для ВЭПП-4М и на спроектированных) в циклических УНК показано, что результаты измерений должны включать в себя данные высокоточного нивелирования короткими лучами. Для этого необходимо разработать измерительную систему, позволяющую устанавливать на один знак как отра-

🖾 R1 🖾 R2

Рисунок 4.33 – График спектральной чувствительности предложенного варианта сети источника СИ СКИФ для радиального направления, где R₁ – знаки, принадлежащие внешнему радиусу; R₂ – знаки, принадлежащие внутреннему радиусу

6 ГАРМОНИЧЕСКИЙ АНАЛИЗ ДАННЫХ ГЕОДЕЗИЧЕСКИХ ИЗМЕРЕНИЙ ДЛЯ ПАРАМЕТРОВ УСКОРИТЕЛЯ ЗАРЯЖЕННЫХ ЧАСТИЦ

жатель лазерного трекера, так и рейку в соответствии с требованиями высокоточного нивелирования [6, 19, 36, 44, 68, 69]. При этом центр отражателя и ноль нивелирной рейки должны иметь наименьшую разницу (порядка 0,02 мм).

🖾 Z1 🖾 Z2

Рисунок 4.34 – График спектральной чувствительности предложенного варианта сети источника СИ СКИФ для вертикального направления, где Z_1 – знаки, принадлежащие внешнему радиусу; Z_2 – знаки, принадлежащие внутреннему радиусу

На основе проведенного спектрального анализа предложенного варианта сети было установлено, что уравненные координаты пунктов СГС позволяют устанавливать технологическое оборудование УНК в проектное положение в соответствии с заданными допусками.

7 геодезический мониторинг физического оборудования с учетом спектрального анализа

7.1 Цели геодезического мониторига

Наблюдения за деформациями уникальных сооружений занимают значительное место в современной практике высокоточных инженерно-геодезических работ [19, 22, 28, 50, 60, 62, 64, 65]. Для крупных инженерных сооружений, имеющих высокие требования к пространственному положению технологического оборудования и как следствие к стабильности положения строительных конструкций, должен быть организован геодезический мониторинг, как на стадии строительства, так и в период эксплуатации [33, 37, 40, 66, 74]. Только комплексный подход к геодезическому мониторингу позволяет выявить тенденции и определить величины смещений конструкций сооружений, что в свою очередь дает возможность принимать необходимые технические решения при эксплуатации уникального оборудования и осуществлять прогнозирование «поведения» несущих тоннелей на период проведения научных экспериментов. Геодезический мониторинг деформационных процессов является одной из форм изучения состояния инженерных объектов, которая определяется тремя составляющими: наблюдение, оценка, прогноз [12]. Целями проведения геодезического мониторинга в конечном счете является:

 оценка рисков, связанных с развитием процессов деформации сооружений и прилегающей к ним территории;

 поиск ранних предвестников возможных катастрофических деформационных процессов, могущих привести к утрате объекта или к созданию препятствий к нормальной эксплуатации сооружений [66].

Мировая практика эксплуатации УНК показывает, что даже при «идеальной» начальной юстировке магнитных элементов через некоторый промежуток времени требуется повторение юстировки оборудования. Оценку долговременных смещений дает эмпирический закон по формуле

$$dX^{2} = A \times T \times L , A \approx 10^{-4} \, \text{MKM}^{2} \,/(c \times M), \qquad (5.1)$$

где Т – время за которое два участка тоннеля, находящиеся на расстоянии L, переместятся относительно друг друга на величину dX, которая в среднем по времени и пространству равна 0, а ее дисперсия подчиняется этому закону. Константа А зависит от места и глубины залегания тоннеля [67]. Применение этого закона на стадии проектирования УНК позволяет получить приблизительные оценки долговременных смещений оснований тоннелей. На практике стабильность пространственного положения УНК очень зависит от геологических характеристик грунтов, находящихся в основании тоннелей, и природных и техногенных факторов реализующихся на площадке строительства. Так для линейного тоннеля ВЭПП-5 оценка по эмпирической формуле (5.1) даёт период в 15 месяцев между циклами юстировки, а геодезический мониторинг тоннеля определяет этот период не более 10 месяцев. Геодезический мониторинг деформаций оснований тоннелей дает реальные данные для определения периода между юстировками физического оборудования ускорителей.

7.2 Спектральное представление деформационных процессов несущих сооружений ускорителей заряженных частиц

Для кольцевых несущих тоннелей ускорителей с периметрами в несколько сотен метров анализ вертикальных смещений по результатам геодезических наблюдений на основе графика осадок можно считать недостаточно информативным. Так как он не позволяет в полном объеме определить тенденции изменения жесткости в конструкции тоннеля на участках различной протяженности. Т.е. на графике практически невозможно выделить из величины реализованного вертикального смешения знака сети составляющие, относящиеся к различным в масштабе объекта деформациям.

Спектральное представление вертикальных деформаций кольцевого тоннеля как дополнительный инструмент анализа предполагает, что длина волны каждой гармоники на периметре тоннеля определяет протяженность участка, на котором реализуется вертикальное смещение знаков высотной сети на величины амплитуд данной гармоники. Для реализации представления вертикальных деформаций в спектральном виде на практике выполняется следующее. Проводится цикл геодезических измерений по определению высотного положения знаков сети. Измерения обрабатываются, находятся отклонения высотных отметок от средней отметки в данном цикле ΔH_i , далее вычисляются амплитуды гармоник, т.е. проводится Фурье-анализ результатов:

$$a_k = \sqrt{\left(\frac{2}{n}\sum_{i=1}^n \Delta H_i \cos(\frac{2\pi k S_i}{P})\right)^2 + \left(\frac{2}{n}\sum_{i=1}^n \Delta H_i \sin(\frac{2\pi k S_i}{P})\right)^2}, \quad (5.2)$$

где *P* – периметр тоннеля; *n* – число точек; *k* – номер гармоники;

S_i – текущая продольная координата точки *i*.

Спектральный состав вертикальных деформаций тоннеля ВЭПП-4м за период 2001-2013 гг, полученный по данному алгоритму, показан на рисунке 5.1. Точность определения величины амплитуд гармоник с учетом корреляции определения превышений между знаками в высотной геодезической сети ВЭПП-4м представлены на графике, рисунок 5.2.

Для анализа результатов, представленных на графике, рисунок 5.1, следует периметр тоннеля разделить на номер гармоники и получить протяженность участка, на котором

Рисунок 5.1 – Спектральный состав вертикальных деформаций тоннеля ВЭПП-4м

Рисунок 5.2 – Точность определения величины амплитуд гармоник

7.2 СПЕКТРАЛЬНОЕ ПРЕДСТАВЛЕНИЕ ДЕФОРМАЦИОННЫХ ПРОЦЕССОВ ——— НЕСУЩИХ СООРУЖЕНИЙ УСКОРИТЕЛЕЙ ЗАРЯЖЕННЫХ ЧАСТИЦ

реализуется вертикальное смещение, аппроксимируемое гармонической функцией. На графике видно, что характер спектрального состава вертикальных деформаций сохраняется от цикла к циклу, но в среднем растут амплитуды. Реализуется наклон кольцевого тоннеля как целого (первая гармоника). Формируется наклон полуколец в форме «раскрытой книги» (вторая гармоника). Пики присутствующие на четвертой, девятой и одиннадцатой гармониках, показывают взаимную разнонаправленность вертикального смещения участков тоннеля протяженностью соответственно около 46, 20 и 17 м. т.е. локальные изменения жесткости конструкции тоннеля. Половина длины волны девятой гармоники близка по протяженности участкам тоннеля расположенным между температурными швами. Для одиннадцатой гармоники просматривается связь с образовавшимися трещинами блоков тоннеля.

Аппроксимация результатов наблюдений цикла 2013 г гармониками наиболее выраженными в спектральном составе показана на рисунке 5.3. В таком виде представления удоб-

Рисунок 3.17 – Аппроксимация результатов наблюдений цикла 2013 года несколькими гармониками

но отслеживать локализацию вертикальных смещений по конкретным гармоникам.

С точки зрения контроля сохранения жесткости конструкции тоннеля важно оценить, на сколько критичны происходящие деформации. Если принять, что предельная относительная растяжимость бетона при изгибе равна около 0,1 мм/м., то в пересчете на стрелку прогиба это составит около 6 мм. Данные величины определяют полное разрушение бетона, тогда как трещинообразование начинается при величинах в 3-4 раза меньших в зависимости от марки бетона [59]. Отношение величины амплитуды гармоники к ¼ части длины ее волны, есть величина относительного вертикального смещения. Следовательно, сумма относительных вертикальных смещений по всем гармоникам, начиная со второй, есть максимально возможная величина для реализации в данном цикле относительной вертикальной деформации Dz_{оппи} кольцевого тоннеля:

$$Dz_{omn.} = \sum_{k=2}^{n} \frac{a_k 4k}{P},$$
 (5.3)

где *а*_{*и*} – амплитуда гармоники;

- *P* периметр тоннеля;
- *n* число гармоник;
- *k* номер гармоники.

Для ВЭПП-4м при n=45 относительная вертикальная деформация Dz_{omh} достигает 1,4 мм это около 23 % от предельной величины, что можно интерпретировать как потерю жесткости в конструкции тоннеля приблизительно на тоже количество процентов.

Применение предлагаемого подхода параллельно с анализом вертикальных смещений тоннеля решает задачу оценки влияния этих смещений на вертикальное искажение орбиты ускорителя. В современной практике эксплуатации для каждого конкретного ускорителя определяется спектральная чувствительность его магнитной структуры к изменению ее геометрических параметров относительно расчетных. Сопоставление спектральной чувствительности ускорителя и спектрального состава деформаций тоннеля позволяет делать выводы о критичности деформаций для нормальной работы ускорителя. Такое сопоставление возможно при достаточной плотности пунктов геодезической сети в тоннеле, позволяющей выполнить аппроксимацию результатов наблюдения гармониками с характерными длинами волн. Большинство кольцевых ускорителей имеют малые величины коэффициентов спектральной чувствительности к низким гармоникам. В данном методе анализа вертикальных деформаций тоннеля ВЭПП-4м нулевая гармоника (изменение плоскости относимости) не рассматривается, что в практическом применении дает возможность более длительное время сохранять положение физического оборудования ускорителя в пределах рабочего диапазона юстировочных узлов.

Развитие осадок прогнозируется экспоненциальной моделью:

$$H = H_0 (1 - e^{-t/\tau}), \qquad (5.4)$$

где H_0 – конечная осадка;

t – текущее время от начала прогноза;

т – время затухания осадки [30].

Использование в геодезическом сопровождении эксплуатации ускорительных комплексов гармонического анализа для оценки вертикальных деформаций кольцевых тоннелей позволяет совместно с традиционным представлением более полно отслеживать деформационные процессы, развивающиеся на территории ускорительного комплекса.

ЗАКЛЮЧЕНИЕ

Высокоточные лазерные системы, лазерные трекеры и другие находят широкое применение в самых различных технологических областях экономики, как в РФ так и за рубежом. Кроме геодезического обеспечения строительства ускорительно-накопительных комплексов, в полной мере это можно отнести к самолетостроению, к строительству современных подводных и надводных судов, автомобилестроению и других. Нередко, работает принцип, чем современней и технологичней продукт, тем более высокие требования предъявляются к точности его изготовления и монтажа.

В монографии показано, что тех рекомендаций, которые даны в руководствах к лазерным приборам, в периодической научной литературе недостаточно для достижения требуемой точности монтажа уникального физического оборудования. Обоснована и показана на практических примерах необходимость и целесообразность проведения дополнительных исследований для определения точностных параметров лазерных трекеров, возможность их применения на этапах изготовления магнитных элементов ускорительно-накопительных комплексов, монтажа технологического оборудования и геодезического пространственного мониторинга в процессе эксплуатации установок.

Представлены разработанные методики и практические результаты научных исследований, выполненные авторами на ускорительно-накопительных комплексах ИЯФ СО РАН, а так же в ходе выполнения работ по международным контрактам; по созданию и эксплуатации Большого Адронного Коллайдера (LNS) в Швейцарии, бустера NSLS-II Брукхей-
венской лаборатории (США), в произодстве дипольных магнитов для медицинского центра ионной терапии в Gumma University (Япония), 24-х дипольных магнитов синхротрона MBH-C (Австрия), при модернизации и создании новой специальной геодезической сети для Бустер коллайдера NICA в Объединенном институте ядерных исследований, г. Дубна, в Европейском синхротроне (ESRF) в г. Гренобле, Сибирского кольцевого источника фотонов синхротронного излучения 4-го поколения (СКИФ), в Новосибирске и других.

В качестве основных научных результатов, представленных в монографии выделим;

 – разработку методики геодезического обеспечения стадий создания УНК, с учетом технологических связей с элементами согласования в пространстве и времени процессов создания физического оборудования и строительства сооружений для его размещения;

 разработана и реализована методика геодезического обеспечения УНК для модульного принципа сборки и монтажа физического оборудования на гирдерах, что позволяет вести строительство тоннеля и монтаж оборудования в параллельном режиме с существенным сокращением сроков строительства;

– предложен алгоритм оценки максимальных относительных вертикальных деформаций кольцевых тоннелей ускорителей на основе гармонического анализа с оценкой изменений «жесткости» тоннеля с определением величин вертикальных деформаций на длине бетатронной волны, с выявлением максимально и минимально критичных нарушений заранее заданных допусков;

 – разработана специальная методика работы лазерным трекером при геодезическом обеспечении изготовления магнитных элементов ускорителей с сопровождением магнитных измерений с периодической юстировкой в проектное положение при эксплуатации УНК;

 предложен алгоритм определения коэффициентов, необходимых для настройки модуля проектирования специальной геодезической сети (Measurement Simulation) в программном продукте Spatial Analyzer на основе исследований о влиянии расстояний между прибором и отражателем на параметры эллипсоидов погрешностей;

 – разработан алгоритм вычисления оптимальных для заданных условий геодезических измерений (углов и расстояний) при работе с лазерными трекерами на основе заданных,
– допусков и радиуса проектной кольцевой оси;

– разработана методика геодезического обеспечения для установки элементов магнитной структуры источника синхротронного излучения 4– поколения СКИФ со средней квадратической погрешностью 0.07 мм для проектного радиуса 476 метров, с разработкой проекта создания специальной геодезической сети с оптимальным количеством определяемых пунктов и станций лазерного трекера.

Авторы осознают, что несмотря на значительный объем выполненных научных исследований по определению возможностей и эффективности геодезических измерений лазерными трекерами до их завершения, еще очень далеко, и мы находимся лишь в начале пути широкого внедрения в производство. Поэтому исследования в этой области весьма актуальны и несомненно должны быть продолжены.

Авторы будут благодарны всем за выявленные замечания, пожелания и рекомендации. БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1 Боков, М. А. Плановая геодезическая сеть модернизированного ускорителя ВЭПП-4м [Текст] / М. А. Боков и др. // Геодезическое и фотограмметрическое обеспечение строительства и эксплуатации инженерных сооружений: научнотехн. сб. тр. – М., 1991. – С. 45–52.

2 Большаков, В. Д. Справочное руководство по инженерно-геодезическим работам [Текст] / В. Д. Большаков, Г. П. Левчук, В. Е. Новак. – М.: Недра, 1980. – 781 с.

3 Власенко, Е. П. Особенности ориентирования подземных геодезических сетей методом двух шахт [Текст] / Е. П. Власенко, Хамид Фармарз Пур // Изв. вузов. Геодезия и аэрофотосъемка. – 2007. – № 1. – С. 39–43

4 Высокоточные инженерно-геодезические работы по созданию опорной геодезической сети ускорителя [Текст] / М. А. Боков, Д. Б. Буренков, П. П. Мурзинцев, А. В. Полянский : метод. указания по выполнению лаб. работ. – Новосибирск, СГГА, 2007. – 50 с.

5 Ганьшин, В. Н. Геодезические методы измерений вертикальных смещений сооружений и анализ устойчивости реперов [Текст] / В. Н. Ганьшин, А. Ф. Стороженко. – 2-е изд., перераб. и доп. – М.: Недра, 1991. – 190 с.

6 Геодезический мониторинг вертикальных деформаций тоннелей ускорительных комплексов ИЯФ СО РАН [Текст] / Д. Б. Буренков, П. П. Мурзинцев, А. В. Полянский, Ю. А. Пупков, Л. Е. Сердаков // Интерэкспо ГЕОСибирь-2013: IX Междунар. Науч. конгр. :15–26 апр. 2013г., Новосибирск: Междунар. науч. конф. «Геодезия, геоинформатика, картография, маркшейдерия», сб. материалов Новосибирск: СГГА, 2013. – Т.1, ч.1. – С. 128–132.

7 Геодезическое обеспечение эксплуатации промышленных предприятий [Текст] / В. Б. Жарников, Б. Н. Дьяков, Б. Н. Жуков и др. – М.: Недра, 1992. –160 с.

8 Геодезическое сопровождение на этапах сборки и эксплуатации модернизируемого источника синхротронного излучения ESRF [Текст] / Л. Е. Сердаков, П. П. Мурзинцев, Мартин Д.// Геодезия и картография. – 2018. – № 11. – С. 2–8

9 Принцип преемственности и его роль при построении геодезических сетей на поверхности и в тоннеле УНК [Текст] / В. А. Горелов, Г. В. Глухов, Е. Д. Лавриненко // Известия вузов. Геодезия и аэрофотосъёмка. – 2002. – № 3. – С. 15–21.

10 Создание планового геодезического обоснования при строительстве УНК [Текст] / В. А. Горелов, Г. В. Глухов, Е. Д. Лавриненко // Известия вузов. Геодезия и аэрофото-съёмка. – 2002. – № 3. – С. 3–14.

11 ГОСТ Р 55024-2012 Сети геодезические. Классификация. Общие технические требования [Текст]: Национальный стандарт Российской Федерации. М. Стандартинформ. 2014

12 ГОСТ 24842012. Грунты. Методы измерения деформаций оснований зданий и сооружений [Текст]. – М.: Стандартинформ, 2014.

13 ГОСТ 8.401-80 ГСИ. Классы точности средств измерений. Общие требования [Текст]. – М.: Изд-во стандартов, 2010. – 12 с.

14 ГОСТ 21779-82 (СТ СЭВ 2681-80). Система обеспечения точности геометрических параметров в строительстве. Технологические допуски [Текст]. – М.: Изд-во стандартов, 1983. – 22 с.

15 Гуляев, Ю. П. Прогнозирование деформаций сооружений по геодезическим данным [Текст] / Ю. П. Гуляев // Геодезия и картография. – 1983. – № 12. – С. 17–21.

16 Ермаков, В. С., Инженерная геодезия. Геодезические сети [Текст]: Учеб. пособие / В. С. Ермаков, Е. Б. Михаленко, Н. Н. Загрядская, Н. Д. Беляев, Ф. Н. Духовской. СПб.: Издво СПбГПУ, 2003. 40 с.

17 Жарников, В. Б. О классах точности нивелирования для контроля деформаций [Текст] / В. Б. Жарников, Б. Н. Жуков // Геодезия и картография. – 1990. – № 9. – С. 22– 26.

18 Жуков, Б. Н. Геодезический контроль инженерных объектов промышленных предприятий и гражданских комплексов [Текст]: учеб. пособие / Б. Н. Жуков, А. П. Карпик. – Новосибирск: СГГА, 2006. – 148 с.

19 Жуков, Б. Н. Руководство по геодезическому контролю сооружений и оборудования промышленных предприятий при их эксплуатации [Текст] / Б. Н. Жуков. – Новосибирск: СГГА, 2004. – 376 с.

20 Иванов, В. Г. Об одном из главных источников ошибок точного и высокоточного нивелирования [Текст] / В. Г. Иванов // Геодезия и картография. – 1998. – № 4. – С. 21 – 26.

21 Инженерная геодезия [Текст]: учебник для вузов / Е.Б.Клюшин, М.И.Киселев, Д.Ш.Михелев, В.Д.Фельдман; под ред. Д.Ш.Михелева. – 4-е изд., испр.– М.: Академия, 2004. – 480 с.

22 Инструкция по нивелированию I , II, III и IV классов [Текст]. – М.: ЦНИИГАиК, 2004. – 226 с.

23 Исследование точностных характеристик дальномеров API LASER TRAKER 3 [Текст] / Д. Б. Буренков, П. П. Мурзинцев, А. В. Полянский, Ю. А. Пупков, Л. Е. Сердаков // ГЕО-Сибирь-2011: сб. материалов. – СГГА. – 2011. – С.9–12.

24 Исследование точностных характеристик внутреннего электронного уровня API Laser Tracker 3 [Текст] / Д. Б. Буренков, П. П. Мурзинцев, А. В. Полянский, Ю. А. Пупков, Л. Е. Сердаков // Геодезия и картография. – 2013. – № 6. – С. 13–16.

25 Карлсон, А. А. О качестве высокоточного нивелирования короткими лучами [Текст] / А. А. Карлсон // Геодезия и картография. – 1986. – № 4. – С. 45–49.

26 Карпик, А. П., Геодезическое обеспечение изысканий, строительства и мониторинга мостовых сооружений [Текст]: Учеб. пособие / А. П. Карпик, П. П. Мурзинцев, В. А. Падве. – Новосибирск: СГУГиТ, 2015. – 222 с.

27 Карпик, А. П. Некоторые проблемы геодезического обеспечения тоннеля при скоростной проходке [Текст] / А. П. Карпик; Новосиб. ин-т инж. геодезии, аэрофотосьемки и картографии. – Деп. в ВОНТИ ЦНИИГАиК 27.05.83, № 98, гд-Д-83. – Новосибирск, 1983.

28 Карпик, А. П. Исследование и анализ точности специальных инженерно-геодезических сетей методом математического моделирования [Текст] : метод. указания / А. П. Карпик, И. Н. Чешева. – Новосибирск: СГГА, 2009. – 32 с.

29 Карпик, А. П. Вычисление вероятнейшего положения оси тоннеля на круговой кривой[Текст] / А. П. Карпик Межвуз. сб.: Совершенствование методов инженерно-геодезических работ. – Новосибирск: НИИГАиК. –1988. – Вып. 37. – С. 67–73.

30 Коллайдеры и детекторы ИЯФ [Текст]: Научное издание / А. Н. Скринский, П. В. Логачев, Г. Н. Кулипанов и др. – Новосибирск: ИЯФ СО РАН, 2018. – 426 с.

31 Колмогоров, В. Г. Оценка пространственно-временных характеристик современной геодинамики Сибири [Текст] / В. Г. Колмогоров // Изв. вузов. Геодезия и аэрофотосъёмка. – 2012. – № 2/1.– С. 33–35.

32 Комар, Е. Г. Основы ускорительной техники [Текст] : учеб. пособие / А. А. Соколов, Е. Г. Комар. – М., 1975.

33 Кочетов, Ф. Г. Нивелиры с компенсаторами [Текст] / Ф. Г. Кочетов. – М.: Недра, 1985. – 148 с.

34 Лебедев, А. Н. Теория циклических ускорителей [Текст] : учеб. пособие / А. Н. Лебедев. – М., 1962.

35 Левашов, Ю. И. Критерии и технология прецизионной установки магнитов ВЭПП-4м методом сглаживания [Текст]: автореф. на соиск. учен. степ. канд. техн. наук : 01.04.20 / Левашов Юрий Иванович. – Новосибирск, 1999. – 17 с.

36 Лошков, С. А. Геодезическое обеспечение строительства технологических тоннелей и монтажа блоков ускорительно-накопительных комплексов [Текст] : обзор. инфор. / С. А. Лошков, Л. Н. Витюк. – М. – ЦНИИГАиК ГУГК СССР, 1988. – 68 с.

37 Лоусон, Ч. Численное решение задач метода наименьших квадратов [Текст] / Ч. Лоусон, Р. Хенсон ; пер. с англ. – М.: Наука, 1986. – 232 с.

38 Мазуров, Б. Т. Анализ геодезических измерений с учетом динамики объектов мониторинга [Текст] / Б. Т. Мазуров // Изв. вузов. Геодезия и аэрофотосъёмка. – 2012. – № 2/1. – С. 18–21.

39 Маркузе Ю. И. Основы уравнительных вычислений [Текст] : учеб. пособие для геодез. спец. вузов / Ю. И. Маркузе. – М.: Недра, 1990. – 239 с.

40 Мещерский И. Н. Об ошибках высокоточного нивелирования [Текст] / И. Н. Мещерский // Геодезия и картография. – 1987. – № 7. – С. 48–52.

41 Маркузе, Ю. И. Теория математической обработки геодезических измерений [Текст] : учеб. пособие для вузов /

Ю. И. Маркузе, В. В. Голубев ; под общ. ред. Ю. И. Маркузе. – М. : Академический Проект Альма Матер, 2010. – 247 с.

42 Полянский, А. В. Модульный принцип геодезического сопровождения строительства тоннелей уникальных сооружений [Текст] / А. В. Полянский, М. А. Боков, Ю. И. Левашов // Геомониторинг на основе соврем. технологий сбора и обработки информации, посвящ., 90-летию К. Л. Проворова : тез. докл. / СГГА. – Новосибирск, 1999. – С. 89.

43 Наземное лазерное сканирование [Текст] : монография / В. А. Середович, А. В. Комиссаров, Д. В. Комиссаров, Т. А. Широкова. – Новосибирск: СГГА, 2009. – 261 с.

44 Нестерёнок, В. Ф. О нормировании точности геометрического нивелирования для измерения деформаций [Текст] / В. Ф. Нестерёнок // Геодезия и картография. –1992. – №3. – С. 16–18.

45 Неволин, А. Г. Влияние ошибок исходных данных на точность определения геометрических параметров крупногабаритного технологического оборудования [Текст] / А. Г. Неволин, Т. М. Медведская // Интерэкспо ГЕО-Сибирь-2016. XII Междунар. науч. конгр. : Междунар. науч. конф. «Геодезия, геоинформатика, картография, маркшейдерия» : сб. материалов в 2 т. (Новосибирск, 18–22 апреля 2016 г.). – Новосибирск : СГУГиТ, 2016. Т. 1. – С. 13–19.

46 Неволин, А. Г. К вопросу о влиянии ошибок исходных данных на точность определения геометрических параметров технологического оборудования [Текст] / А. Г. Неволин, Т. М. Медведская // Вестник СГУГиТ. – 2019. – Т. 24, № 1. – С. 16–27.

47 Пискунов, М. Е. Методика геодезических наблюдений за деформациями сооружений [Текст] / М. Е. Пискунов. – М.: Недра, 1980. – 248 с.

48 Николаев, С. А. Определение периода стабилизации осадок инженерных сооружений по данным геодезических наблюдений [Текст] / С. А. Николаев // Изв. вузов. Геодезия и аэрофотосъёмка. – 1978. – № 4. – С. 41–45.

49 Николаев, С. А. Статистические исследования осадок инженерных сооружений [Текст] / С. А. Николаев. – М.: Недра, 1983. – 110 с.

50 Об оптимизации опорных геодезических кольцевых сетей ускорителей при использовании лазерных трекеров [Текст] / Л. Е. Сердаков, П. П. Мурзинцев, А. В. Полянский // Геодезия и картография. – 2017. – № 5. – С. 2–6

51 О возможности изучения деформационного состояния земной поверхности по результатам повторного высокоточного нивелирования [Текст] / В. Г. Колмогоров, Г. Г. Асташенков // Изв. вузов. Геодезия и аэрофотосъёмка. – 2012. – № 2/1, 2012. – С. 16–17.

52 О выборе местоположения станций лазерного трекера для установки технологического оборудования [Текст] / Л. Е. Сердаков, Д. Б. Буренков, П. П. Мурзинцев, А. В. Полянский// Геодезия и картография. – 2019. – № 11. – С. 22–25

53 О нахождении устойчивой группы знаков при обработке повторных измерений в свободных сетях [Текст] / М. А. Боков, Ю. И. Левашов, А. В. Полянский, Ю. А. Пупков // Геомониторинг на основе соврем. технологий сбора и обработки информации, посвящ., 90-летию К. Л. Проворова : тез. докл. / СГГА. – Новосибирск, 1999. – С. 90.

54 О геодезическом сопровождении BOOSTER NSLS-II Брукхейвенской национальной лаборатории министерства энергетики США [Текст] / Д. Б. Буренков, П. П. Мурзинцев, А. В. Полянский, Ю. А. Пупков, Л. Е. Сердаков // Интерэкспо ГЕО-Сибирь-2012: VIII Междунар. науч. конгр. : 10–12 апр. 2012г., Новосибирск: Междунар.науч. конф. «Геодезия, геоинформатика, картография, маркшейдерия», сб. материалов в 3 т. – Новосибирск: СГГА, 2012. – Т.1. – С. 183–188.

55 Отчет об инженерно-геологических изысканиях на площадке строительства тоннеля инжекционного комплекса ВЭПП-5 [Текст]. – Новосибирск: ЗапСибТИСИЗ, 1991.

56 Геодезическое обеспечение создания бустера для NSLS-II [Текст] / Д. Б. Буренков, П. П. Мурзинцев, А. В. Полянский, Ю. А. Пупков, Л. Е. Сердаков // Геодезия и картография. – 2013. – № 6. – С. 13–16

57 Проект супер С-т фабрики в Новосибирске [Текст] Институт Ядерной Физики им. Г. И. Будкера СО РАН. – Новосибирск, 2011. – 156 с.

58 Пособие по производству геодезических работ в строительстве (к СНиП 3-01.03.-84) [Текст]. – М.: НИИОМТП Госстроя СССР, 1985. – 73 с.

59 Пупков, Ю. А. Система допусков на установку магнитов ускорителей на большие энергии [Текст] / Ю. А. Пупков, И. Я. Протопопов, А. Н. Скринский Материалы научно-техн. конф. Геодезические работы при монтаже и эксплуатации технологического оборудования . – Новосибирск, 1978. – С. 99–103.

60 Пупков, Ю. А. Определение ошибки измерения превышений в зависимости от длины визирного луча по невязкам замкнутых нивелирных ходов [Текст] / Ю. А. Пупков // Исследования по геодезии, аэрофотосъемке и картографии. – Вып.5(4). – С. 86–90.

61 Пупков, Ю. А. Технические требования на установку в проектное положение магнитных элементов модернизированного ускорительнонакопительного комплекса ВЭПП-4м ИЯФ СО АН СССР [Текст] / Ю. А. Пупков, Ю. И. Левашов. – Новосибирск: ИЯФ, 1987. 62 Скрипников, В. А. Применение высокоточных оптико-электронных приборов при измерении деформаций инженерных сооружений [Текст] / В. А. Скрипников // ГЕО-Сибирь-2009: сб. материалов V Междунар. науч. конгр. «ГЕО-Сибирь-2009», 20–24 апр. 2009 г., Новосибирск.– Новосибирск: СГГА, 2009. – Т. 1, ч. 1. – С. 170–172.

63 Скрипникова, М. А. Возможности применения автоматизированных высокоточных электронных тахеометров при измерении деформаций инженерных сооружений [Текст] / М. А. Скрипникова // ГЕО-Сибирь-2010: сб. материалов VI Междунар. науч. конгр. «ГЕО-Сибирь-2010», 19–29 апр. 2010 г., Новосибирск. – Новосибирск: СГГА, 2010. – Т. 1, ч. 1. – С. 131–134.

64 Смалюк В. В., Диагностика пучков заряженных частиц в ускорителях [Текст] Под ред. Чл-корр. РАН Н. С. Диканского. Новосибирск, Параллель, 2009 – 294 с.

65 СНиП 3.01.03-84 Геодезические работы в строительстве [Текст]. – М.: Госстрой СССР, 1985.

66 СНиП 3.03.01-87 Несущие и ограждающие конструкции [Текст]. – М.: Госстрой СССР, 1987.

67 СП 47.13330.2016. Свод правил. Инженерные изыскания для строительства. Основные положения. Актуализированная редакция СНиП 11-02-96. – http://www.minstroyrf.ru/ upload/iblock/213/merged.pdf.

68 СП 11-104-97 Инженерно-геодезические изыскания для строительства. Дата введения 01.01.1998 – http://docs. cntd.ru/document/871001219

69 СП 11-104-97 Инженерно-геодезические изыскания для строительства [Текст]. – М.: ПНИИС Госстроя России, 1997.

70 СНиП 32-04-97. от 29.07.97 N 18-41 Тоннели железнодорожные и автодорожные [Текст]. – М.: Госстрой России, 1998.

71 СТО РусГидро 01.01.133-2015 Гидроэнергетическое строительство. Инженерные изыскания при разработке схем территориального планирования и проектной документации. Нормы и требования. Издание официальное. 2015 - http://www.rushydro.ru/upload/iblock/cf8/047_STO-RusGidro-01.01.133-2015_Inzhenernie-iziskaniya.pdf

72 Столбов, Ю. В. Исследование и обоснование допусков на геодезические работы при монтаже промышленных сооружений [Текст] : дисс. канд. техн. наук / Ю. В. Столбов. – М.: МИСИ, 1975. – 141 с.

73 Столбов, Ю. В. Прикладная геодезия. Геодезические разбивочные работы при строительстве зданий и сооружений [Текст] / Ю. В. Столбов, Ю. В. Столбова. – Омск : СибАДИ, 2016. – 43 с.

74 Создание 3D-модели участка перепускного канала Бустер-Нуклотрон на основе данных геодезических измерений [Текст] / Л. Е. Сердаков // ГеоСибирь-2017: сб. материалов XIII междунар. науч. конгр.– Новосибирск.– 2017.– Т. 1, ч. 1.– С. 63–66

75 Судаков, С. Г. Основные геодезические сети [Текст]/ Судаков С. Г.//М., Недра, 1975, 368 с.

76 Тамутис, З. П. Проектирование инженерных геодезических сетей [Текст] / З. П. Тамутис. – М.: Недра, 1990. – 138 с.

77 Технический проект ускорительного комплекса NICA / Объединённый ин-т ядерных исследований; под общ. ред. И. Н. Мешкова, Г. В. Трубникова. Дубна.: ОИЯИ, 2015. Т. 2 [Электронный ресурс]. – Режим доступа: http://nucloweb. jinr. ru /nica/ TDR/ 2015/TDR_Volume_2.pdf 78 Технические указания по защите бетонных мостовых опор от образования температурных трещин [Текст] / ЦНИИС Минтрансстроя. – М., 1958.

79 Травкин, С. В. Разработка методов и средств поверки и калибровки геодезических приборов для измерения превышений [Текст] : автореф. на соиск. учен. степ. канд. техн. наук : 25.00.32 / Травкин Сергей Владимирович. – М., 2007. – 25 с.

80 Указания по производству геодезическо-маркшейдерских работ при строительстве подземных коммуникаций закрытыми способами. ВСИ 123-75 [Текст] / Главмосстрой: утв. 30.12.75. – Б. И., 1976. – 34 с.

81 Уставич, Г. А. Об опыте исследования влияния рефракции на результаты точного нивелирования [Текст] / Г. А. Уставич // Геодезия и картография. – 1975.– № 6. – С. 11–12.

82 Уставич, Г. А. Разработка методов, средств и технологий геодезических измерений при монтаже и эксплуатации оборудования инженерных сооружений в условиях влияния возмущающих воздействий [Текст] : автореф. дис. на соиск. учен. степ. д-ра техн. наук :05.24.01 / Уставич Георгий Афанасьевич. – М., 1993. – 48 с. :

83 Влияние электромагнитных полей на инженерно-геодезические работы [Текст] / Г. А. Уставич, Я. Г. Пошивайло, Е. Л. Соболева, М. С. Калинина // Геодезия и картография. – 2005. – № 11. – С. 28–30.

84 Уставич, Г. А. Технология выполнения высокоточного нивелирования цифровыми нивелирами [Текст] / Г. А. Уставич // Геодезия и картография. – 2006. – № 2. – С. 3–6.

85 Федосеев, Ю. Е. Стратегия и тактика интерпретации результатов геодезического мониторинга деформационных

процессов [Текст] / Ю. Е. Федосеев, Е. А. Егорченкова // Наука и Безопасность. – 2011. – № 2 (12), дек.

86 Фетисов Г. В., Синхротронное излучение. Методы исследования структуры веществ [Текст]: М. ФИЗМАТЛИТ, 2007. – 672 с.

87 Физический проект комплекса ВЭПП-5 [Текст]. – Новосибирск, 1995.

88 Хорошилов, В. С. Оптимизация комплекса инженерно-геодезических работ при монтаже технологического оборудования инженерных объектов [Текст] : автореф. на соиск. учен. степ. д-ра техн. наук : 25.00.32 / Хорошилов Валерий Степанович.– СГГА, Новосибирск, 2009.– 20с.

89 Шоломицкий, А. А. Контроль геометрических параметров машины непрерывного литья заготовок [Текст] / А. А. Шоломицкий, А. Л. Сотников, В. И. Адаменко // Металлургические процессы и оборудование. – 2007. – № 3. – С. 27–30.

90 Ямбаев, Х. К. Геодезический контроль прямолинейности и соосности в строительстве [Текст] / Х. К. Ямбаев. – М.: Недра, 1986.-264 с.

91 Ямбаев, Х. К. Специальные приборы для инженерногеодезических работ [Текст] / Х. К. Ямбаев. – М.: Недра, 1990. – 267 с.

92 API automated precision. [Электронный ресурс]. – Режим доступа: http://www.apisensor.com. – Загл. с экрана.

93 Allgemeine Vermessungs Nachrichten [Text] / W. Schwarz Die Justierung von Teilchenbeschleunigern. – Heft 1, 1990.

94 Bernardini, C. AdA: The First Electron-Positron Collider [Text] / Carlo Bernardini // Phis. perspect. – 2004.– 6.– P.156-183.

95 First experimental results at the high power free electron laser at Siberian Center for Photochemistry Research [Text] / Antokhin E. A., Kiselev O. B., Polyanskiy A. V., et al // Preprint Budker INP 2003–53, Novosibirsk, 2003.

96 Gassner, G. Instrument tests with new Leica AT401 [Text] / G. Gassner, R. Ruland // IWAA 2010, Bessy Sept 2010.

97 High precision geodesy applied to CERN accelerators [Text] / J. Gervaise and E.J.N. Wilson, CERN, Geneva, Switzerland.

98 ISO10360-2 2009 Geometrical product specifications (GPS) – Acceptance and reverification tests for coordinate measuring machines (CMM) – Part 2: CMMs used for measuring linear dimensions.

99 Metrology for LEP [Text] / M. Mayoud, J. P. Quesnel Applied // CERN Accelerator School, Applied Geodesy for Particle Accelerators, CERN, Switzerland, April, 1987.

100 Matrix method for analysis of network accuracy based on the beam dynamic theory [Text] / Yurii A. Pupkov, Yurii I. Levashov, Budker Institute of Nuclear Physics, Novosibirsk, Russia //Proceedings of the Fourth International Workshop on Accelerator Alignment (IWAA95), November 14–17, KEK, Tsukuba, 1995.

101 Laser Tracker API T3 [Electronic resource] http://www. nevatec.ru/tracker3/files/tracker_api.pdf.

102 Laser Tracker API Radian [Electronic resource] http://www.nevatec.ru/Radian/files/Radian.pdf.

103 Precision Alignment of Multipoleson a Girder for NSLS-II [Text]/Animesh Jain. – 17th International Magnetic Measurement Workshop (IMMW17), Barcelona, Spain, 18–23 September, 2011.

104 Results of Long-term Observations of Deformations of the VEPP-4 Storage Ring Constructions [Electronic resource] / BINP, M. Bokov, D. Burenkov, A. Polyanskiy, Yu. Pupkov, Russia and Yu. Levashov, USA, 1st FIG International Symposium on Engineering Surveys for Construction Works and Structural Engineering Nottingham, United Kingdom, 28 June – 1 July 2004. 105 Status of NSLS-II booster [Text] / S. M. Gurov, E. B. Levichev, A. V. Polyansky, T. V. Shaftan, S. Sharma, D. S. Shichkov et al. // ISSN 1562–6016. BAHT. – 2012. – $N^{\circ}4(80)$.

106 Status of the Novosibirsk high power free electron Laser project [Text] / N. A. Vinokurov,. Yu. I. Levashov et al. – Free electron laser chalenges, 13–14 Feb., 1997, San Jose, California, eds, p. 185–187.

107 Status of the Novosibirsk High Power Free Electron Laser [Text] / Kulipanov G. N., Antokhin E. A., Kiselev O. B., Polyanskiy A. V., et al // Proc. of 3-rd Asian Particle Accelerator conference, Gyeongju, Korea, March 22–26, 2004.

108 Status of NSLS-II booster [Electronic resource] / S. Gurov et al, //PAC'11, New-York, 2011, WEP201, p. 437. http://www.JACoW.org.

109 Survey and Alignment Report on the Primary Control Network for the APS/ Light Source [Text] / H. Fridsam, J. Penicka, S. Zhao Note LS–220, 1993.

110 THE FINAL ALIGNMENT OF THE LHC [Text] / D. Missiaen, T. Dobers, M. Jones, C. Podevin, J. P. Quesnel // CERN, Geneva, Switzerland 10th International Workshop on Accelerator Alignment, KEK, Tsukuba, 11-15 February 2008.

111 Willeke, F. Accelerator Systems Installation [Text] / F. Willeke. – ASD Director 6th ASAC, October 22–23, 2009.

Приложение 1

Схема геодезических измерений высотной сети ВЭПП–4м, разработанная Пупковым Ю. А., Левашовым Ю. И., Мурзинцевым П. П.

Приложение 2

Тренировочные измерения с помощью инварных лент и мерных жезлов ауд. 31 (НИИГАиК-СГГА-СГУГиТ) Власенко А. В., Мурзинцев П. П., Боков М. А.

Приложение 3

Точность измерения превышений, рассчитанная по невязкам полигонов из 16 циклов измерений, составляет σ = 0,025 мм. На рисунке 3.11 представлен график осадок тоннеля ВЭПП-4м за период 2001-2013 гг.

График осадок тоннеля ВЭПП-4м

Результаты циклов (2001-2013) геодезических измерений высотной сети ВЭПП-4м

Ho-	2001	2003	2004	2005	2006	2007	2008	2009	2010	2012	2013
мер					0	тметка	мм				
знака						i me i nu,					
1	0,680	1,101	1,394	1,613	1,847		-1,333	-1,101	-0,826	-0,494	-0,148
2	0,735	1,277	1,558	1,798	2,088	2,219	2,552	2,818	3,120	3,566	3,883
3	0,724	1,238	1,491	1,701	1,968	2,129	2,414	2,528	2,847	3,283	3,651
4	0,856	1,385	1,609	1,803	2,029	2,245	2,564	2,711	2,937	3,372	3,739
5	0,835	1,340	1,586	1,776	1,975	2,191	2,430	2,524	2,731	3,037	3,375
6	0,638	1,161	1,355	1,516	1,673	1,854	2,110	2,186	2,374	2,675	2,992
7	0,603	1,121	1,348	1,485	1,669	1,834	2,013	2,019	2,282	2,491	2,828
8	0,268	0,717	0,935	1,050	1,156	1,299	1,401	1,492	1,687	1,841	2,064
9	0,313	0,682	0,899	0,990	1,051	1,104	1,160	1,259	1,443	1,474	1,668
10	0,233	0,645	0,856	0,979	0,995	1,115	1,209	1,282	1,534	1,586	1,747
11	0,431	0,896	1,146	1,315	1,396	1,490	1,699	1,764	2,005	2,080	2,212
12	0,630	1,129	1,471	1,663	1,760	1,878	2,126	2,151	2,363	2,529	2,676
13	0,738	1,254	1,644	1,853	1,978	2,038	2,374	2,353	2,583	2,681	2,856
14	0,851	1,433	1,848	2,056	2,143	2,245	2,569	2,518	2,746	2,888	3,056
15	0,808	1,395	1,779	1,961	2,074	2,157	2,522	2,475	2,713	2,857	3,006
16	0,736	1,279	1,646	1,802	1,815	1,903	2,239	2,146	2,438	2,613	2,735
17	0,719	1,117	1,344	1,516	1,438	1,483	2,006	1,835	1,925	1,943	2,022
18	0,729	1,176	1,588	1,762	1,810	1,969	2,246	2,210	2,452	2,591	2,643
19	0,739	1,239	1,635	1,833	1,911	2,175	2,430	2,536	3,119	3,272	3,421
20	0,640	1,111	1,489	1,659	1,745	2,004	2,267	2,308	2,521	2,631	2,803
21	0,762	1,263	1,628	1,834	1,922	2,211	2,389	2,530	2,744	2,895	3,112
22	0,544	1,001	1,330	1,604	1,751	2,039	2,225	2,367	2,573	2,845	3,095
23	0,494	0,980	1,248	1,504	1,627	1,918	2,069	2,290	2,494	2,783	3,034
24	0,567	0,933	1,144	1,465	1,607	1,890	1,996	2,172	2,331	2,614	2,881
25	0,795	1,130	1,444	1,775	1,762	2,067	2,286	2,204	2,405	2,640	2,837
26	0,627	0,959	1,123	1,411	1,495	1,836	1,980	2,104	2,247	2,519	2,869
27	0,711	1,100	1,241	1,575	1,730	1,996	2,184	2,402	2,610	2,906	3,103
28	0,501	0,872	1,077	1,382	1,506	1,704	1,914	2,033	2,316	2,525	2,596
29	0,360	0,731	0,958	1,280	1,420	1,557	1,727	1,918	2,184	2,389	2,471

Ho-	2001	2003	2004	2005	2006	2007	2008	2009	2010	2012	2013
мер знака					0	тметка,	ММ				
30	0,232	0,577	0,901	1,206	1,359	1,466	1,631	1,755	2,042	2,199	2,459
31	0,097	0,409	0,731	1,050	1,231	1,230	1,390	1,558	1,807	1,966	2,107
32	0,357	0,651	1,074	1,383	1,480	1,560	1,693	1,741	2,027	2,227	2,423
33	0,333	0,641	1,081	1,348	1,477	1,546	1,661	1,716	1,956	2,141	2,296
34	-0,102	0,371	0,753	0,880	0,870	0,939	1,892	1,740	1,958	2,295	2,420
35	0,411	0,747	1,131	1,376	1,461	1,659	1,835	1,834	2,075	2,363	2,431
36	0,260	0,717	1,037	1,274	1,407	1,569	1,826	1,762	2,015	2,343	2,422
37	0,238	0,557	0,899	1,104	1,259	1,442	1,671	1,614	1,895	2,206	2,219
38	0,287	0,776	1,057	1,276	1,431	1,609	1,879	1,768	2,073	2,425	2,437
39	0,330	0,700	1,008	1,232	1,428	1,632	1,833	1,850	2,210	2,486	2,540
40	0,105	0,552	0,784	0,962	1,152	1,344	1,431	1,506	1,698	2,170	2,191
41	0,387	0,763	1,051	1,285	1,498	1,715	1,741	2,006	2,167	2,741	2,868
42	0,375	1,131	1,309	1,511	1,918	2,185	2,126	2,629	2,851	3,446	3,752
43	0,334	0,717	0,940	1,035	1,179	1,393	1,426	1,717	1,814	2,257	2,237
44	0,325	0,526	0,591	0,674	0,707	0,902	0,980	1,162	1,202	1,594	1,463
45	-0,037	0,118	0,032	0,028	0,004	0,133	0,265	0,400	0,304	0,511	0,376
46	-0,481	-0,318	-0,364	-0,382	-0,275	-0,253	-0,182	0,098	-0,087	0,257	0,243
47	-0,953	-1,078	-1,277	-1,364	-1,464	-1,480	-1,415	-1,380	-1,602	-1,521	-1,646
48	-1,151	-1,376	-1,655	-1,875	-2,020	-2,199	-2,223	-2,281	-2,560	-2,606	-2,826
49	-1,151	-1,431	-1,815	-2,128	-2,288	-2,495	-2,606	-2,712	-2,999	-3,057	-3,388
50	-1,363	-1,735	-2,152	-2,486	-2,684	-3,019	-3,140	-3,273	-3,644	-3,722	-4,036
51	-1,236	-1,700	-2,163	-2,549	-2,738	-3,149	-3,304	-3,467	-3,813	-3,900	-4,300
52	-1,267	-1,843	-2,317	-2,737	-2,960	-3,457	-3,647	-3,845	-4,214	-4,350	-4,830
53	-1,456	-2,087	-2,593	-3,027	-3,281	-3,818	-4,027	-4,243	-4,646	-4,830	-5,336
54	-1,227	-1,919	-2,477	-2,864	-3,177	-3,738	-3,944	-4,187	-4,638	-4,855	-5,314
55	-1,211	-1,981	-2,541	-2,900	-3,263	-3,814	-3,976	-4,321	-4,699	-5,088	-5,649
56	-1,200	-2,080	-2,670	-3,071	-3,393	-3,947	-4,187	-4,507	-4,888	-5,166	-5,733
57	-1,104	-2,040	-2,654	-3,071	-3,343	-4,065	-4,117	-4,499	-4,850	-5,234	-5,714
58	-1,281	-2,308	-2,917	-3,388	-3,690	-4,334	-4,430	-4,734	-5,100	-5,469	-5,967
59	-1,197	-2,236	-2,916	-3,376	-3,667	-4,301	-4,370	-4,687	-5,058	-5,441	-5,856
60	-1,077	-2,148	-2,796	-3,283	-3,565	-4,166	-4,245	-4,527	-4,890	-5,223	-5,650
61	-1,106	-2,131	-2,776	-3,210	-3,467	-4,140	-4,176	-4,454	-4,803	-5,196	-5,578
62	-1,015	-1,890	-2,472	-2,918	-3,248	-3,806	-3,903	-4,105	-4,466	-4,784	-5,217
63	-0,902	-1,983	-2,585	-2,997	-3,364	-3,950	-4,034	-4,273	-4,584	-5,051	-5,415
64	-0,569	-1,602	-2,254	-2,665	-3,006	-3,522	-3,608	-3,831	-4,108	-4,521	-4,815
65	-0,687	-1,669	-2,146	-2,548	-2,798	-3,370	-3,505	-3,610	-3,864	-4,244	-4,468

Ho-	2001	2003	2004	2005	2006	2007	2008	2009	2010	2012	2013
мер					0	TMATKO	MM				
знака					0	тметка,	MM				
66	-0,601	-1,478	-1,953	-2,339	-2,550	-3,066	-3,090	-3,207	-3,454	-3,830	-4,003
67	-0,610	-1,397	-1,785	-2,163	-2,331	-2,830	-2,861	-2,937	-3,171	-3,529	-3,683
68	-0,518	-1,265	-1,645	-1,974	-2,153	-2,637	-2,616	-2,719	-2,930	-3,290	-3,366
69	-0,550	-1,262	-1,615	-1,945	-2,130	-2,599	-2,598	-2,733	-2,948	-3,318	-3,461
70	-0,487	-1,232	-1,647	-2,011	-2,219	-2,691	-2,711	-2,895	-3,171	-3,526	-3,678
71	-0,569	-1,356	-1,687	-2,110	-2,385	-2,894	-2,953	-3,203	-3,506	-3,943	-4,155
72	-0,440	-1,238	-1,568	-1,969	-2,167	-2,690	-2,732	-2,991	-3,313	-3,632	-3,826
73	-0,459	-1,266	-1,657	-1,995	-2,257	-2,790	-2,783	-3,004	-3,335	-3,774	-3,884
74	-0,171	-0,966	-1,341	-1,667	-1,829	-2,440	-2,385	-2,598	-3,001	-3,353	-3,474
75	-0,372	-1,181	-1,517	-1,803	-1,978	-2,520	-2,441	-2,676	-3,052	-3,407	-3,556
76	-0,352	-1,078	-1,380	-1,656	-1,786	-2,302	-2,219	-2,431	-2,802	-3,123	-3,305
77	-0,358	-0,989	-1,235	-1,463	-1,612	-2,056	-1,963	-2,197	-2,509	-2,885	-3,048
78	-0,240	-0,734	-0,866	-1,098	-1,152	-1,406	-1,326	-1,575	-1,862	-2,192	-2,386
79	-0,265	-0,553	-0,586	-0,749	-0,922	-1,197	-1,097	-1,343	-1,521	-2,016	-2,176
80	-0,048	-0,177	-0,160	-0,244	-0,310	-0,521	-0,329	-0,438	-0,603	-1,056	-1,145
81	0,182	0,187	0,088	0,142	0,104	-0,018	0,127	0,032	-0,023	-0,555	-0,691
82	0,207	0,245	0,248	0,374	0,348	0,246	0,399	0,467	0,389	-0,306	-0,405
83	0,316	0,494	0,481	0,618	0,660	0,610	0,733	0,746	0,780	-0,042	-0,166
84	0,503	0,685	0,715	0,913	0,951	0,870	0,970	1,048	1,046	0,191	0,055
85	0,386	0,637	0,636	0,810	0,938	0,871	0,938	0,978	1,029	0,157	0,022
86	0,415	0,723	0,824	0,983	1,125	1,000	1,012	1,203	1,125	0,443	0,362
87	0,455	0,758	0,979	1,100	1,322	1,142	1,063	1,196	1,208	0,751	0,733
88	0,540	0,878	1,122	1,330	1,501	1,563	2,079	2,310	2,396	2,697	3,038
89	0,426	0,816	0,996	1,184	1,268	1,354	1,807	2,222	2,251	2,633	3,093
90	0,315	0,754	0,939	1,129	1,214	1,339	2,104	2,171	2,279	2,765	3,284
91	0,314	0,834	1,013	1,188	1,414	1,475	1,790	2,417	2,495	3,088	3,666
92	0,185	0,816	1,055	1,311	1,602	1,642	2,214	2,559	2,718	3,382	3,885
93	0,480	1,033	1,312	1,547	1,803	1,890	2,392	2,767	2,900	3,558	3,929
94	0,750	1,250	1,580	1,810	2,019	2,145	2,467	2,879	3,105	3,707	3,968

Результаты погрешностей углов и длин линий со станций лазерного трекера спроектированной сети с внесенными случайными погрешностями после уравнивания в программных продуктах SA и PANDA

№ станции	Измеряемая величина	SA	PANDA
	Horizontal Angle (sec)	0.8	1.56
1	Vertical Angle (sec)	0.6	1.28
	Distance (mm)	0.01	0.03
	Horizontal Angle (sec)	1.1	1.88
2	Vertical Angle (sec)	0.9	1.52
	Distance (mm)	0.01	0.03
	Horizontal Angle (sec)	1.0	1.08
3	Vertical Angle (sec)	0.9	1.04
	Distance (mm)	0.01	0.04
	Horizontal Angle (sec)	0.7	0.48
4	Vertical Angle (sec)	0.6	2
	Distance (mm)	0.01	0.03
	Horizontal Angle (sec)	0.7	0.56
5	Vertical Angle (sec)	0.8	0.8
	Distance (mm)	0.01	0.02
	Horizontal Angle (sec)	0.9	0.6
6	Vertical Angle (sec)	0.8	0.96
	Distance (mm)	0.01	0.04
	Horizontal Angle (sec)	0.7	0.88
7	Vertical Angle (sec)	0.7	1.36
	Distance (mm)	0.01	0.04

№ станции	Измеряемая величина	SA	PANDA
	Horizontal Angle (sec)	0.7	0.6
8	Vertical Angle (sec)	0.5	0.92
	Distance (mm)	0.02	0.03
	Horizontal Angle (sec)	0.6	0.72
9	Vertical Angle (sec)	0.5	0.48
	Distance (mm)	0.02	0.03

Приложение 6

Разница координат полученных после уравнивания в SA и PANDA от проектных

	Spa	atial Analy	zer		PANDA	
	Х (мм.)	Ү(мм.)	Z(мм.)	Х (мм.)	Y(мм.)	Z(мм.)
GL1	-0.032	-0.014	0.005	0.000	0.000	0.000
GL2	0.015	0.003	0.002	0.040	-0.010	0.000
GL3	-0.006	-0.001	-0.013	-0.050	0.000	0.000
GL4	-0.011	0.017	-0.014	0.030	-0.030	0.000
GL5	0.005	-0.012	0.004	0.000	0.050	0.000
GL6	0.005	-0.005	0.005	0.010	0.060	0.000
GL7	-0.004	0.009	-0.019	0.000	0.000	0.000
GL8	0.006	0.013	-0.008	-0.010	-0.040	0.000
GL9	0.003	-0.002	-0.011	0.000	-0.050	0.000
GL10	0.009	-0.013	-0.021	0.070	-0.030	0.000
GL11	-0.002	0.006	-0.017	0.050	0.000	0.000
GL12	0.005	0.008	-0.040	0.060	-0.010	0.000
GL13	0.000	-0.008	-0.008	0.000	0.000	0.000
GL14	-0.019	-0.013	-0.002	-0.040	0.010	0.000
GL15	-0.017	0.008	0.003	0.050	0.000	0.000

	Spa	atial Analy	zer		PANDA	
	Х (мм.)	Y(мм.)	Z(мм.)	Х (мм.)	Y(мм.)	Z(мм.)
GL16	-0.026	-0.002	0.000	-0.030	0.030	0.000
GL17	-0.017	-0.017	0.011	0.000	0.050	0.000
GL18	-0.027	0.016	0.031	-0.010	0.040	0.000
GL19	-0.041	0.001	-0.013	0.000	0.000	0.000
GL20	-0.037	-0.004	0.008	0.010	0.040	0.000
GL21	-0.011	-0.006	-0.010	0.000	-0.050	0.000
GL22	-0.022	0.003	-0.012	0.030	0.030	0.000
GL23	-0.040	-0.009	0.016	-0.050	0.000	0.000
GL24	-0.009	-0.001	-0.002	0.040	0.010	0.000
GR1	-0.024	-0.011	-0.003	0.000	0.000	0.000
GR2	-0.010	0.008	-0.003	-0.010	0.010	0.000
GR3	0.005	0.017	0.001	-0.040	-0.050	0.000
GR4	-0.004	-0.001	-0.020	0.000	-0.020	0.000
GR5	0.006	-0.002	-0.018	0.050	-0.060	0.000
GR6	-0.034	-0.022	0.001	0.050	0.060	0.000
GR7	-0.036	-0.010	0.008	0.000	0.020	0.000
GR8	-0.027	-0.004	0.013	-0.040	0.050	0.000
GR9	-0.014	0.007	0.014	-0.010	-0.010	0.000

Приложение 7

Отклонения уравненных значений координат геодезических знаков по результатам уравнивания в Spatial Analyzer и PANDA сети ВЭПП-4M от проектных

Отклонения уравненных значений координат геодезических знаков, по результатам уравнивания в Spatial Analyzer для трех вариантов кольцевой пространственной сети периметром 282,7 метра, от проектных.

Приложение 9

Нивелирование в тоннеле ускорителя. Пупков Юрий Алексеевич, Сердаков Л.Е.

Подготовка к геодезическим измерениям на гирдере. Буренков Д. Б., Полянский А. В., Сердаков Л. Е.

Физическое оборудование в центре европейских ядерных исследований.(Гренобль, Франция)

Первый в мире ускоритель на встречных пучках. ВЭПП-1

Боков Марк Аркадьевич проводит занятия со студентами

ВЭПП-2000

Результаты контрольного цикла геодезических измерений положения элементов бустера NSLS-II Part 1: Deviations of Key Elements

CYU ANALYSIS: Au	to Vectors:	Groups: R	All Vect	tors Summary: Vector Group DE FINAL to FID WO BEAM DIRECTION VECTOR WO DS CS AND BPM
Statistic	dR	dTheta	dZ	Mag
Min	-0.1726	-0.0000	-0.1493	0.0070
Max	0.3140	0.0000	0.2774	0.3255
Average	0.0051	-0.0000	0.0014	0.0653
StdDev from Avg	0.0588	0.0000	0.0511	0.0445
StdDev from Zero	0.0590	0.0000	0.0511	0.0791
RMS	0.0590	0.0000	0.0510	0.0790
Count	639			

CYU ANALY	SIS Auto Vect	ors Groups	REFERENC	Vector Gro E FINAL to FI	UP D WO BEAM	DIRECTION	VECTOR	wo os c	S AND BP	м
Name		Begin			End			Del	a	77.
	R1	Theta1	Z1	R2	Theta2	Z2	dR	dTheta	dZ	Ma
BR-A1BD1F1	24172.5139	-102.1422	180.0001	24172,4877	-102.1422	180.0052	-0.0282	0.0000	0.0051	0.026
BR-A1BD1F2	24469.7546	-102.0448	179,9768	24469.7333	-102.0448	179.9795	-0.0213	0.0000	0.0027	0.024
BR-A1BD1F3	24443.0083	+103.4165	180.0013	24443.0194	+103.4165	179.9774	0.0111	-0.0000	+0.0239	0.028
BR-A1BD1F4	24653.3163	-104.6936	180.0049	24653.3509	-104.6936	179.9628	0.0348	-0.0000	-0.0421	0.056
BR-A1BD1F5	24358.3550	-104.8224	179.9910	24358.3739	-104.8224	179.9667	0.0189	-0.0000	-0.0243	0.032
BR-A1CX1F1	24590.6273	-107.9164	124.0440	24590.6879	-107.9184	124.0710	8080.0	-0.0000	0.0270	0.088
BR-A1CX1F2	24784.0803	-107.8421	124.0540	24784.0989	-107.8421	124.0420	0.0186	0.0000	-0.0120	0.022
BR-A1CX1F3	24835.3943	-107.8232	74,2400	24835,4100	-107.8232	74.2382	0.0157	0.0000	-0.0018	0.018
BR-A1CX1F4	24835.4954	-107.8227	-74.1520	24835.4955	-107.8227	-74.1546	0.0001	0.0000	-0.0026	0.017
BR-A1CY1F1	24639.6292	-105.8323	150.1020	24639,4872	-105.8323	150,1509	-0.1420	0.0000	0.0489	0.15
BR-A1CY1F2	24475.8914	-105.8819	150.0920	24475.6309	-105.8819	150.0837	-0.0605	-0.0000	-0.0083	0.06

SA 2013.03.22 (x64)

WORKING FRAME: A::BOOSTER UNITS: Millimeters

Ī	CYU ANAL	/SIS Auto Vec	tors Groups	REFERENC	Vector Gro CE FINAL to FI	NIP D WO BEAM	DIRECTION	VECTOR	WO DS C	S AND BP	м
ľ	Name		Begin		-	End	70	. et	Delt	3	
ł	PR-YSKIKE1	22039 5547	00.0041	-88.0000	23039 7239	00.0041	.95 7228	0.1601	01 neta	0.2774	0.3265
L	BR-XSKIKF2	24185.5862	98,7927	-86.0000	24185.6362	98,7927	-85,7287	0.0500	0.0000	0.2713	0.2780
L	BR-XSKIKF3	24016.3107	95,6082	-86.0000	24016,4674	95,6082	-86.0042	0,1567	0.0000	-0.0042	0.1568
L	BR-XSKIKF4	23767.5199	95.8871	-86.0000	23767.8339	95.6671	-85.9301	0.3140	0.0000	0.0899	0.3217
L	BR-XSSMP1F1	23789.8099	91.9271	138.3700	23789.7781	91,9271	138.3963	-0.0318	0.0000	0.0263	0.0413
L	BR-XSSMP1F2	23899.7480	91.9182	138.3900	23899.8587	91.9182	138.3795	0.1107	-0.0000	-0.0105	0.1118
L	BR-XSSMP1F3	23888.3022	90.7316	138.3700	23888.2723	90.7316	138.3643	-0.0299	0.0000	-0.0057	0.0350
L	BR-XSSMP1F4	23778.3112	90.7349	138.3800	23778.2315	90.7349	138.4115	-0.0797	-0.0000	0.0315	0.0875
L	BR-XSBUM3F2	23916.0079	85.9480	94.9600	23916.1409	85.9480	95.0238	0.1330	0.0000	0.0638	0.1475
L	BR-XSBUM3F3	23762.9892	85.7050	94.9500	23/63.0151	85.7050	94.8388	0.0259	-0.0000	-0.1112	0.1142
L	BR-ABOUNSP4	25922.0981	70 0664	220 0640	23922.010/	70 0664	220 0328	0.1384	0.0000	-0.0430	0.1400
L	BR-A30E1E2	24078 7134	79 6036	230 0480	24078 8087	79 6036	220 0332	0.0053	0.0000	-0.0149	0.0065
L	BR-A3OF1F3	24263,7136	79.6848	230.0800	24263.6294	79.6848	230,1460	-0.0842	0.0000	0.0860	0.1070
L	BR-A3QF1F4	24305.9471	79,1513	230.0100	24305,9166	79,1513	230.0550	-0.0305	0.0000	0.0450	0.0547
L	8R-XSBUM4F1	24014.2558	80.6654	94.9089	24014.2563	80.6654	94.8544	0.0007	0.0000	+0.0545	0.0582
L	BR-XSBUM4F2	24172.1687	80.7272	94.8988	24172.1594	80.7272	94.8027	-0.0093	0.0000	-0.0961	0.0968
L	BR-XSBUM4F3	24028.7812	80.4537	95.0052	24028.7140	80.4537	95.0428	-0.0872	-0.0000	0.0376	0.0773
L	BR-XSBUM4F4	24186.8725	80.5166	95.0237	24186.7796	80.5166	95.0431	-0.0929	-0.0000	0.0194	0.0950
L	BR-XSCXW2F1	24038.9883	80.0598	132.5360	24038,9325	80.0598	132,5371	-0.0558	-0.0000	0.0011	0.0571
L	BR-XSCXW2F2	24232.3578	80.1401	132.5500	24232.2986	80.1401	132.5468	-0.0592	0.0000	-0.0032	0.0614
L	BR-XSCXW2F3	24283.8971	80.1599	82.4180	24283.5523	80.1599	82.4490	-0.1448	0.0000	0.0316	0.1493
L	BR-ASCAW2F4	24283.0580	80.1099	-82.0030	24283.0720	80.1599	-82.0011	0.1121	0.0000	-0.0381	0.1280
L	BR-43801F1	24469 6247	77 0549	170 0057	24460 7716	77 0549	180.0246	0.1260	0.0000	0.0289	0.1200
L	BR-438D1F3	24443 0008	76 5833	170 0776	24443 1800	78 5833	170 0554	0 1511	0.0000	.0.0222	0 1530
L	BR-A3BD1F4	24653.1612	75.3063	180.0298	24653.2965	75,3063	179,9408	0.1353	-0.0000	-0.0892	0.1621
L	BR-A3BD1F5	24358.1149	75.1775	179.9829	24358.2500	75.1775	179,9310	0.1351	0.0000	-0.0519	0.1449
L	BR-A3CX1F1	24784.1576	72.1575	124.0000	24784.0831	72.1575	123.9991	-0.0745	0.0000	-0.0009	0.0747
L	BR-A3CX1F2	24590.7414	72.0825	124.0000	24590.6853	72.0825	123.9404	-0.0561	0.0000	-0.0596	0.0841
L	BR+A3CX1F3	24835.2887	72.1771	74.2130	24835.2996	72.1771	74.1485	0.0109	-0.0000	+0.0645	0.0654
L	BR-A3CX1F4	24835.1574	72.1760	-74,3130	24835.4229	72.1760	-74.3126	0.2655	0.0000	0.0004	0.2658
L	BR-A3CY1F1	24639.5580	74.1684	150.0000	24639.5484	74.1684	149.9510	8900.0-	-0.0000	-0.0490	0.0499
L	BR-ASUTIF2	24475.8310	74.1204	150.1190	24470.0203	74.1204	100.08/1	0.0945	0.0000	-0.0324	0.1008
L	DR-ABUTIFS	24068.0813	74.1000	97.7708	24088.1714	74.1000	87.7008	0.0001	-0.0000	-0.0058	0.1033
L	BR-ASOD1E1	24008.0813	70 7918	230 1201	24068,1020	70 7818	230 1071	0.0070	0.0000	-0.0041	0.0285
L	BR-430D1F2	24852 0008	71 3087	230 0585	24652 0539	71 3067	230 0454	0.0533	0.0000	.0.0131	0.0585
L	BR-A3QD1F3	24839.0132	71,3852	229,9496	24839.0925	71.3852	229,9095	0.0793	0.0000	-0.0401	0.0889
L	BR-A3QD1F4	24880.9182	70.8639	229.9722	24880.9265	70.8639	229.9165	0.0083	-0.0000	+0.0557	0.0592
L	BR-A3QG1F1	24539,7390	72.8633	230.0811	24539.8240	72.8633	230.0192	0.0850	-0.0000	-0.0619	0,1052
L	BR-A3QG1F2	24505.8121	73.3948	230.0498	24505.8131	73.3948	229.9388	0.0010	0.0000	-0.1108	0.1113
L	BR-A3QG1F3	24693.9800	73.4578	229.9569	24593.9828	73.4578	229.8081	0.0028	-0.0000	-0.1488	0.1500
L	BR-A3QG1F4	24727.6204	72.9303	230.0075	24727.7055	72.9303	229.8986	0.0851	-0.0000	-0.1089	0.1384
L	BR-A3BD2F1	25003.1547	05.9433	180.0113	25063.0915	00.9433	179,9857	-0.0632	0.0000	-0.0256	0.0710
1	BR-A3BU2F2	25300.2084	84 7185	170 0010	25300.2019	64 7165	170.0110	-0.00/5	0.0000	-0.0005	0.0008
1	BR-A3BD2E4	25547 0400	63 4950	170 0021	25547 0804	63 4950	170 0500	0.0105	0.0000	-0.0341	0.0407
L	BR-A3BD2F5	25253.0301	63.3597	179,9943	25253.0745	63 3597	179,9975	0.0444	-0.0000	0.0032	0.0475
1	BR-A3BF1F1	24765.9587	70.0880	166.0175	24765.8427	70.0680	166.0063	-0.1160	0.0000	-0.0112	0.1183
1	BR-A3BF1F2	24943.3877	70,1590	166.0061	24943,2894	70,1590	166.0191	-0.0983	0.0000	0.0130	0.0996
1	BR-A3BF1F3	24962.0409	68.8945	166.0352	24981.9323	68.8945	166.0204	-0.1088	0.0000	-0.0148	0.1103
1	BR-A3BF1F4	25152.1154	67.7118	166.0258	25152.0212	67.7118	166.0349	-0.0942	0.0000	0.0091	0.0946
1	BR-A3BF1F5	24976.1771	67.6240	166.0194	24976.0809	67.6240	166.0409	-0.0962	0.0000	0.0215	0.0995
1	BR-A3CX2F1	25328.5862	62.8164	124.0050	25328.5306	62,8164	123.9872	-0.0556	0.0000	+0.0178	0.0620
1	BR-A3CX2F2	25523,1781	62,8706	124.0000	25523,1203	62.8706	123.9847	-0.0578	0.0000	-0.0153	0.0606
1	BR-A3CX2F3	200/4./925	02.8843	74.1850	20074.7077	62.8843	74.0/10	-0.0348	-0.0000	-0.1134	0.1185
1	BR-A3SE1E1	25129 0035	66 8227	159 0300	25128 9883	66 8227	159 0626	-0.0352	0.0000	0.0326	0.0520
1	BR-A3SE1F2	24994 2228	66.7613	79.6490	24994,2029	66.7613	79.6215	-0.0197	0.0000	-0.0275	0.0342
L	BR-A3SF1F5	25264.0583	00.8905	79,5590	25264.0738	66.8865	79,5727	0.0155	0.0000	0.0137	0.0257
L	BR-A3BD3F1	25563.8052	58.0973	180.0269	25563.8880	58.0973	180.0747	0.0828	-0.0000	0.0478	0.0972
L	BR-A3BD3F2	25862.9287	58.1484	180.0117	25863.0175	58.1484	179.9434	0.0888	0.0000	-0.0683	0.1121
L	BR-A3BD3F3	25800.2003	56.8561	180.0515	25800.2760	56.8561	180.0070	0.0757	0.0000	+0.0445	0.0893
L	BR-A3BD3F4	25975.7253	55.6185	180.0113	25975.7862	55.0185	179.9975	9050.0	-0.0000	-0.0138	0.0630
L	BR-A3BD3F5	25677.8227	55.5382	180.0266	25677.8735	55.5382	180.0070	0.0508	0.0000	-0.0198	0.0544
L	BR-A3BF2F1	25394.7382	61.9548	166.0390	25394,8957	61.9548	166.0567	-0.0425	-0.0000	0.0177	0.0466
L	BR-A3BF2F2	20073.0107	01.9996	100.0200	20073.5822	01.9996	100.0039	-0.0285	0.0000	-0.0161	0.0383
1	BR-A3BF2F3	20008.4/90	50 5050	100.0390	20008.0201	50 2020	100.8/33	0.0400	0.0000	-0.0007	0.0831
L	ODIBODC/PR	20110.0038	00,0002	100.0200	20/10.0408	00,0002	100.0033	0.0400	-0.0000	-0.0011	0.07 60
l	BR.A3BE2EE	25538 5720	50 5220	188.0380	25538 6199	60 5220	188 0252	0.04041	0.0000	-0.0107	0.0444

SA 2013.03.22 (x64)

WORKING FRAME: A::BOOSTER UNITS: Millimeters Page 7 / 22

	200.000000	and the second	1		Vector Gro	up	A REPORT OF A				51
	CYU ANAL	YSIS: Auto Vec	tors Groups	REFEREN	CE FINAL to FI	D WO BEAM	DIRECTION	VECTOR	WO DS C	S AND BP	M
	Name	R1	Thetal	Z1	82	Theta2	72	dR	dThetal	dZ	Ma
۲Ŀ	BR-A3CY2F2	25752.4529	54.9952	150.0510	25752.4543	54,9952	150.0811	0.0014	-0.0000	0.0101	0.016
Т	BR-A3CY2F3	25967.3073	55.0218	97,9920	25967.3103	55.0218	98.0094	0.0030	-0.0000	0.0174	0.019
	BR-A3CY2F4	25967.2983	55.0220	-97.9830	25967.2963	55.0220	-97.9931	-0.0020	0.0000	-0.0101	0.017
	BR-A3BD4F1	25839.7583	50.0862	180.0210	25839.7385	50.0862	180.0992	-0.0198	0.0000	0.0782	0.083
Т	BR-A3BD4F2	26139.7580	50.0947	180,0030	26139,7433	50.0947	180.1477	-0.0147	-0.0000	0.1447	0.146
Т	BR-A3BD4F3	26040.2504	48.8204	180.0510	26040.2128	48.8204	180.0963	-0.03/0	0.0000	0.0453	0.059
Т	BR.A3BD4FE	25880 3212	47 5308	180.0280	25990 2810	47 5308	180.0171	-0.0802	0.0000	0.0100	0.050
Т	BR-A3BF3F1	25777,5971	54,1380	166.0300	25777.5232	54,1380	166.0176	-0.0739	0.0000	-0.0124	0.075
Т	BR-A3BF3F2	25957.3426	54,1554	166.0400	25957.3237	54,1554	166.0401	-0.0189	-0.0000	0.0001	0.027
L	BR-A3BF3F3	25905.6475	52.9432	166.0810	25905.5878	52.9432	166.0826	-0.0597	-0.0000	0.0016	0.063
Т	BR-A3BF3F4	26027.8427	51.7575	166.0510	26027.7902	51.7575	166.1236	-0.0525	-0.0000	0.0726	0.090
L	BR-A3BF3F5	25848.5069	51.7235	166.0400	25848.4616	51.7235	166.0535	-0.0453	0.0000	0.0135	0.048
L	BR-A3SD1F1	25955.3600	50.9099	108.9/0/	25955,4035	60.9099	109.0002	0.0422	-0.0000	0.0285	0.054
L	DR-ASSUIF2	20017.7071	50.00/4	79.4100	20017.7119	50.0074	70.2702	0.0046	0.0000	-0.00/4	0.017
L	BR-A3BE4F1	25939.4910	46 2070	166.0147	25939.4604	48 2070	165,9988	-0.0306	-0.0000	-0.0161	0.034
Т	BR-A3BF4F2	28119,5111	46,1996	166.0063	26119,4614	46,1986	165,9942	-0.0497	-0.0000	-0.0121	0.054
L	BR-A3BF4F3	26032.2742	45.0032	166.0167	26032.2454	45.0032	165.9901	-0.0288	-0.0000	-0.0266	0.043
L	BR-A3BF4F4	26119.2700	43.8075	166.0197	26119.3038	43.8075	165.9855	0.0338	0.0000	-0.0342	0.049
L	BR-A3BF4F5	25939.3213	43.7993	166.0343	25939,3217	43.7993	165,9821	0.0004	-0.0000	-0.0522	0.054
L	BR-A3BD5F1	25879.9399	42.4692	180.0607	25879.8841	42.4692	180.0464	-0.0558	-0.0000	-0.0143	0.059
L	BR-A3BD5F2	20179.0910	42.4310	180.0390	20179.0412	42.4310	180.0786	-0.0004	-0.0000	0.0391	0.064
L	BR-ASBUSES	26139.6731	30.0139	170 0516	26139.5407	90.0122	170 9001	0.0265	0.0000	-0.0003	0.051
L	BR-43BD5E5	25830 3847	39 9222	170 0618	25830 3873	30 0222	179 8780	0.0026	-0.0000	-0.0838	0.084
Т	BR-A3BF5F1	25848.0359	38,2831	166.0778	25848.0849	38,2831	165,9480	0.0290	0.0000	-0.1298	0.133
L	BR-A3BF5F2	28027.5300	38.2490	168.0369	28027.5397	38.2490	165.9082	0.0097	-0.0000	-0.1287	0.130
L	BR-A3BF5F3	25905.2640	37.0633	166.0067	25905.2566	37.0633	165.9281	-0.0074	0.0000	-0.0786	0.079
Т	BR-A3BF5F4	25957.0638	35.8512	165,9695	25957.0365	35.8512	165.9730	-0.0273	0.0000	0.0035	0.033
L	BR-A3BF5F5	25777.1215	35.8685	166.0017	25777.1089	35.8685	165.9875	-0.0126	0.0000	-0.0142	0.025
Т	BR-A3SU2F1	25954.7703	39.0937	108.9800	20904./140	39.0937	109.0148	-0.000/	-0.0000	0.0348	0.000
L	BR-A3SD2F2 BR-A3SD2F5	26001 0045	39,0712	79,3050	26091 9142	39.0712	79.2072	-0.0803	-0.0000	-0.0378	0.120
L	BR-A3BDSE1	25677.0880	34 4689	180 0569	25677 1297	34 4689	180 0483	0.0417	-0.0000	-0.0086	0.046
Т	BR-A3BD6F2	25975.0692	34 3890	180.0237	25975.0885	34 3890	179,9940	0.0193	0.0000	-0.0297	0.038
L	BR-A3BD6F3	25799.7178	33.1513	180.0245	25799.7057	33.1513	179.9427	-0.0119	0.0000	-0.0818	0.083
Т	BR-A3BD6F4	25862.6591	31.8586	179.9412	25862,6256	31.8586	179.8621	-0.0335	0.0000	-0.0791	0.086
L	BR-A3BD6F5	25563.5316	31.9096	180,0007	25563.3956	31.9096	179.8706	-0.1360	0.0000	-0.1301	0.188
L	BR-A3BF0F1	25537.7843	30.4823	166.0279	25537.7403	30,4823	165.9449	-0.0440	-0.0000	-0.0830	0.094
L	DD ASDEREA	20/10./083	30.4209	100.0038	20/10./380	30.4209	100.9304	-0.0297	-0.0000	-0.00/4	0.074
L	DD.ASDEREE	25072.7630	20.0003	188.0215	25072,8051	20.0000	188.0580	0.0212	0.0000	0.004/5	0.005
L	BR-A3CY3F1	25916.8926	34 9902	150,1120	25916,8906	34,9902	150,1441	-0.0020	0.0000	0.0321	0.036
L	BR-A3CY3F2	25751.8700	35.0119	150.0030	25751,8090	35.0119	150.0372	-0.0610	0.0000	0.0342	0.072
L	BR-A3CY3F3	25966.7969	34.9843	97,9570	25966,7881	34.9843	98.0436	-0.0088	-0.0000	0.0866	0.087
L	BR-A3CY3F4	25966.7899	34.9842	-97.8920	25966.9464	34.9842	-97.8969	0.1765	0.0000	-0.0049	0.177
L	BR-A3BD7F1	25252.3307	26.6484	180,0360	25252.3273	26.6494	180.0132	-0.0034	0.0000	-0.0228	0.023
L	BR-A3BD7F2	25547.0616	20.5225	179.9960	20047.0854	26.5225	180.0167	0.0238	0.0000	0.0207	0.031
L	BR-A3BU7F3	25335.0778	20.2919	180.0080	20330.0717	20.2919	180.0927	-0.0061	-0.0000	0.0847	0.080
L	BR-A3BD7F5	25082 4837	23.9083	180.0000	25082 3059	23.0083	180 1424	-0.0870	0.0000	0.1001	0.167
L	BR-A3BF7F1	24975.0587	22 3827	165.9650	24975.0822	22 3827	166.0284	0.0135	0.0000	0.0834	0.058
L	BR-A3BF7F2	25151.0282	22 2949	166.0030	25151.0481	22 2949	166.0361	0.0199	0.0000	0.0331	0.042
L	BR-A3BF7F3	24960.8338	21.1122	166.1510	24960.8802	21.1122	166.2236	0.0464	0.0000	0.0726	0.087
L	BR-A3BF7F4	24942.1474	19.8476	166.0930	24942.1849	19.8476	166,1020	0.0175	-0.0000	0.0090	0.020
L	BR-A3BF7F5	24764.6859	19.9187	166.0540	24764,6905	19.9187	166.0612	0.0046	0.0000	0.0072	0.022
L	BR-A3CX3F1	25522.0238	27.1360	124.0120	25522.0530	27.1360	124.0134	0.0294	-0.0000	0.0014	0.032
L	BR-ABCASE2	20321.9580	27.1803	73 00+0	20021.9002	27.1903	72 0830	-0.0328	0.0000	0.1002	0.074
	BR-ABCYSE4	25573 0734	27 (224	-73 9710	25573 8754	27 1224	-73 0444	-0.1000	-0.0000	-0.0171	0.0/0
L	BR-A3SE2E1	25128.0549	23 1820	159.0487	25128.0790	23,1820	159.0451	0.0231	0.0000	-0.0016	0.023
L	BR-A3SF2F2	24993,2114	23,2463	79.6908	24993,2037	23,2463	79,7327	-0.0077	-0.0000	0.0410	0.046
	BR-A3SF2F5	25262.8709	23,1196	79.6782	25262.9300	23.1196	79.7029	0.0591	0.0000	0.0247	0.084
L	BR-A3BD8F1	24356.7772	14.8301	180.0639	24356.7374	14.8301	180.0787	-0.0398	-0.0000	0.0148	0.042
	BR-A3BD8F2	24851.7473	14.7015	180.0772	24651.7604	14.7015	180.0898	0.0131	0.0000	-0.0074	0.025
L	BR-A3BD8F3	24441.5164	13.4245	180.0330	24441.5441	13.4245	179.9778	0.0277	-0.0000	-0.0552	0.081
L	BR-A3BD8F4	24468.3233	12.0528	179.9671	24468.3218	12.0528	179.9546	-0.0015	0.0000	+0.0125	0.021
L	BR-ASBUSFS	24170.8850	12.1498	178.8248	241/1.0140	12.1488	150 14007	0.0285	0.0000	0.00101	0.034
L	BR-A3CY4F2	24038.0188	15,8979	150 0000	24474 3502	15,8973	140 0075	0.0289	-0.0000	-0.0124	0.030
	DIVISION OF A	04807 8004	16 0217	09 0071	24687 7281	15 8217	08 0547	0.0387	-0.0000	0.0424	0.050

SA 2013.03.22 (x64)

WORKING FRAME: A::BOOSTER UNITS: Millimeters Page 8 / 22

CYU ANAL	'SIS Auto Vec	tors: Groups:	REFEREN	Vector Gro CE FINAL to FI	UP D WO BEAM	DIRECTION	VECTOR	WO DS C	S AND BP	м
Name	PI	Begin	71	82	End Thata2	72	leh.	Delt	3 47	Mar
BR-A3CY4F4	24687.7078	15.8227	-07 0050	24687 7480	15.8227	-98.0234	0.0402	0.0000	-0.0275	0.0504
BR-A3QD2F1	24850.9043	18,6995	230,1957	24850.8520	18,0990	230,1938	-0.0523	0.0000	-0.0021	0.0526
BR-A3QD2F2	24693,1780	19 2247	230,1407	24693, 1922	19 2247	230,1733	0.0142	0.0000	0.0326	0.0356
BR-A3QD2F3	24879.9242	19,1422	229,9611	24879.8843	19,1422	229,9619	-0.0399	0.0000	0.0008	0.0411
BR-A3QD2F4	24837,9191	18.6210	229,9798	24837,8741	18.6210	230.0010	-0.0450	0.0000	0.0212	0.0500
BR-A3QG2F1	24504,7026	16.6108	230 1519	24504.6473	16.6108	230,1277	-0.0553	0.0000	-0.0242	0.0612
BR-A3QG2F2	24538.4280	17,1424	230,1064	24538.3620	17,1424	230.0725	-0.0660	-0.0000	-0.0339	0.0744
BR-A3QG2F3	24726 2952	17.0752	229,9610	24728.2254	17.0752	229,9374	-0.0898	-0.0000	-0.0238	0.0738
BR-A3QG2F4	24692.7845	16.5476	230,0093	24892.7581	18.5476	229,9869	-0.0284	0.0000	-0.0224	0.0352
BR-A30F2F1	24074 4053	10 3981	230.0591	24074 4383	10.3981	230 0392	0.0330	-0.0000	-0.0199	0.0425
BR-A3OE2E2	24116 9845	10,9356	230 0285	24117.0442	10 9356	230 0200	0.0597	-0.0000	-0.0085	0.0504
BR-A3OF2F3	24303 6047	10 8507	230 1350	24303 6737	10.8507	230 1154	0.0690	-0.0000	-0.0196	0.0719
BR-A30F2F4	24261,3930	10.3172	230,1705	24261,4182	10.3172	230 1507	0.0252	0.0000	-0.0198	0.0328
BR-CSCX1F1	24037 3553	9 9430	132 5350	24037 3343	9 9430	132 4058	-0.0210	-0.0000	-0.0394	0.0458
BR-CSCX1E2	24230 2800	0.8623	132 5540	24230 2155	0.8623	132 5101	-0.0854	0.0000	-0.0340	0.0767
BR.CSCY1E2	24291 5321	0 8408	82 3010	24291 5222	0.9408	82,2160	0.0000	0.0000	-0.0950	0.0959
BR-CSCX1F4	24281 4014	9,8390	-82 5420	24281 4583	9,8390	-82 5853	-0.0331	0.0000	-0.0233	0.0427
BR-A4OF1E1	24117 3039	10 0353	230 1147	24117 3095	10.0353	230 1002	0.0047	0.0000	0.0145	0.0170
BR-440E1E2	24074 6688	10 3070	230 0000	24074 6511	10 3970	230.0575	-0.0177	0.0000	-0.0334	0.0385
EP.AAOE1E2	24261 6616	10 3 169	220.0082	24261 6470	10 3169	220.0050	0.0045	0.0000	0.0007	0.0191
BR-AAOE1EA	24203 9054	10.0100	220.0015	24203 0115	10.5100	230.0275	0.0141	0.0000	0.0067	0.0307
BD.CSCV2E1	24027 2162	0.0429	122 5270	24027 2756	0.0420	100.0270	0.0407	0.0000	0.0242	0.0521
DD.CCCV2E2	24220 2802	0.0607	122 5281	24220 2612	0.0827	122 5477	0.00407	0.0000	0.0118	0.0000
BB CSCY2E2	24200.0002	0.0412	92 6121	24201 5057	0.0412	92 5211	0.0152	0.0000	0.0000	0.0208
BD.CSCYDEA	24201 8287	0 0418	.02.2000	24201.8407	0 0418	02 4272	0.0000	0.0000	0.0564	0.0200
DD 44DD151	24201.0207	10.1404	100.0000	24201.0407	10 1404	170 07/0	0.0230	0.0000	0.0004	0.0020
DR-ANDUIFI	24171.0010	12.1404	100.0000	24170.8982	12.1909	100.0011	-0.0010	-0.0000	·0.0024	0.0520
DD 44001F2	24400.2004	12.0010	100.0204	24400.2070	12.0010	100.0011	0.0400	0.0000	0.0007	0.0400
DD AADDIEA	24441.0403	14 4007	170.0050	24861 0007	14 8007	170.0059	0.0091	0.0000	0.0000	0.0334
DD AADDICE	24001.8241	14.0207	179.8900	24001.0007	14.0227	178,8800	0.0334	0.0000	0.0000	0.0044
BR-AABUTFO	24300.8/90	-14.8287	179.9840	24300.8077	-14.8287	1/8.8//1	-0.0218	-0.0000	-0.0008	0.0200
BR-AGUTIFT	24038.1438	-10.8381	100.0021	24038,1274	-10.8381	100.0000	-0.0100	-0.0000	0.0034	0.0258
BR-A4CT1F2	24474.0233	-10.68//	100.0700	29979.0000	-10.8877	100.0819	-0.0228	0.0000	0.0009	0.0251
BR-A4CY1F3	24087.7130	-15.8232	97.8901	24087.7222	-15.8232	97,8883	0.0086	-0.0000	-0.0078	0.0235
BR-AAUTIF4	24087.0971	•15.8220	-98.0449	24087.7002	-10.8220	-98.0093	0.0031	-0.0000	-0.0144	0.0000
BR-A4QD1F1	24693.0505	-19.2247	230.1174	24092.9660	-19.2247	230,1073	-0.0845	-0.0000	-0.0101	0.0871
BR-A4QD1F2	24650.8628	-18.6996	230.0580	24650.8874	-18.6996	230.0525	0.0246	0.0000	-0.0055	0.0290
BR-A4QD1F3	24837.8566	-18.6212	229.9404	24837,8908	-18.6212	229.9242	0.0342	-0.0000	-0.0212	0.0406
BR-A4QD1F4	24879.7292	-19.1424	229.9852	24879,6852	-19,1424	229.9608	-0.0440	0.0000	-0.0244	0.0504
BR-ANUG1F1	24038,9591	-17.1418	230.2688	24038,8007	-17.1918	230.2918	-0.0354	0.0000	0.0030	0.0402
BR-A4QG1F2	24505.1572	-16.0105	230.2680	24505.0996	-10.6105	230.2681	-0.0576	0.0000	0.0001	0.0582
BR-A4QG1F3	24693.2567	-10.0477	229.7939	24093.2104	-10.0477	229.7947	-0.0463	0.0000	0.0008	0.0463
BR-A4QG1F4	24/20.8200	-1/.0/52	229.8047	24/20.//03	-17.0752	229,8006	-0.0503	-0.0000	-0.0041	0.0542
BR-A4BD2F1	25062.0774	-24.0630	180.1706	25062.1113	-24.0630	180.2084	0.0339	-0.0000	0.0378	0.0508
BR-A4BU2F2	20309.1397	-23 9008	180.1200	20309.1497	-23.9008	180.1984	0.0100	0.0000	0.0724	0.0/5/
BR-A4BUZF3	25334.8509	-25.2890	180,1893	25334.8807	-25.2890	180.2301	0.0238	0.0000	0.0408	0.0473
BR-A4BD2F4	25547.0515	-26.5201	180.1707	25547.0934	-26.5201	180.1928	0.0419	-0.0000	0.0219	0.0498
BR-A4BU2F5	20202.2030	-20.0464	180,1975	20202.3350	-20.0464	180 2044	0.0720	-0.0000	0.0069	0.0736
BR-A4BF1F1	24/04.0/61	-19.9183	166.0270	24/64.6629	-19.9183	100.0189	-0.0132	0.0000	-0.0081	0.0241
BR-A4BF1F2	24842.0/46	-18.8473	100.01/4	24842.0/09	-18.84/3	100.0259	-0.0037	0.0000	0.0085	0.0158
BR-A4BF1F3	24960.8360	-21,1119	106.1205	24900,9508	-21,1119	105.9999	0.1148	-0.0000	-0.1206	0.1670
BR-A4BF1F4	25151.0320	-22 2949	100.0093	25151,1154	-22 2948	100.0347	0.0834	-0.0000	0.0254	0.0874
BR-A4BF1F5	24975.1157	-22.3828	166.0097	24975.1833	-22.3826	166.0130	0.0678	-0.0000	0.0033	0.0677
BR-A4CX1F1	25327.9515	-27.1910	124.0880	25327.9172	-27.1910	124,1228	-0.0343	-0.0000	0.0346	0.0494
BR-A4CX1F2	20022.4390	-27.1364	124.0790	20022.4139	-27.1364	124.1098	-0.0251	-0.0000	0.0308	0.0407
BR-A4CX1F3	25573.8734	-27.1220	73.9440	25573.8420	+27.1220	73.9914	-0.0314	0.0000	0.0474	0.0582
BR-A4CX1F4	25573.9500	-27.1225	-74.2600	25573.9656	-27.1225	-74.2330	0.0156	-0.0000	0.0270	0.0350
BR-A4SF1F1	25127,8802	-23.1827	159.0208	25127.8698	-23.1827	158.9736	-0.0104	0.0000	-0.04/2	0.0485
BR-A4SF1F4	25263.1237	-23.1210	-79.4358	25263.3244	-23.1210	-79.4043	0.2007	0.0000	0.0315	0.2032
BR-A4SF1F5	25263.0222	+23.1195	79.3379	25263,0846	-23,1195	79.3692	0.0624	-0.0000	0.0313	0.0714
BR-A4BD3F1	25562.8251	-31,9094	180.0595	25562.6525	-31.9094	180.1177	-0.1726	-0.0000	0.0582	0.1822
BR-A4BD3F2	25861,9176	-31.8582	180.0265	25861.9366	-31.8582	179.9948	0.0190	0.0000	-0.0317	0.0370
BR-A4BD3F3	25799.2561	-33.1506	180.0847	25799,1912	-33.1506	180.0757	-0.0849	-0.0000	-0.0090	0.0855
BR-A4BD3F4	25974.9719	-34.3881	180.0498	25974.9079	-34.3881	180.0707	-0.0640	-0.0000	0.0211	0.0874
BR-A4BD3F5	25677.1764	-34.4688	179.9951	25677.0906	-34.4688	179.9820	-0.0858	+0.0000	-0.0131	0.0875
BR-A4BF2F1	25393.7818	-28.0517	166.0261	25393.8021	-28.0517	166.0247	0.0203	0.0000	-0.0014	0.0269
BR-A4BF2F2	25572.8935	-28.0069	166.0376	25572.0985	-28.0089	166.0446	0.0050	-0.0000	0.0070	0.0090
BR-A4BF2F3	25557.8234	-29.2414	166.0765	25557.7417	-29.2414	166.0343	-0.0817	0.0000	-0.0422	0.0922
DD AADEDEA	25715.6728	-30.4213	166.0408	25715.6107	-30.4213	166.0065	-0.0621	0.0000	+0.0343	0.0715
DR-MADETLE	02207 TAA4	-30 4828	166.0707	25537,6361	-30.4828	166.0175	-0.0073	-0.0000	-0.0532	0.0877
BR-A4BF2F5	20031.1034								and the second se	
BR-A4BF2F5 BR-A4CY2F1	25916.9205	-34.9909	150.1070	25916.9427	-34.9909	150,1059	0.0222	0.0000	-0.0011	0.0254
BR-A4BF2F5 BR-A4CY2F1 BR-A4CY2F2	25916.9205 25752.0225	-34.9909	150.1070	25916.9427 25752.0712	-34.9909 -35.0128	150,1059	0.0222 0.0487	0.0000	-0.0011	0.0254

SA 2013.03.22 (x64)

WORKING FRAME: A::BOOSTER UNITS: Millimeters Page 9 / 22

Vector Group										
CYU ANAL	YSIS: Auto Vec	tors Groups	REFEREN	CE FINAL to FI	D WO BEAM	DIRECTION	VECTOR	WO DS C	S AND BP	м
Name	R1	Thetal	71	R2	End Theta2	72	dBl	dThetal	d7	Mag
BR-A4CY2F4	25966.8238	-34,9847	-97,9590	25966.8372	-34.9847	-97,9997	0.0134	-0.0000	-0.0407	0.0470
BR-A4BD4F1	25839,4406	-39.9210	180.0220	25839,4392	-39.9210	179.8852	-0.0014	0.0000	-0.1368	0.1375
BR-A4BD4F2	26139,4511	-39.9122	180.0050	26139.4570	-39.9122	179,9130	0.0059	0.0000	-0.0920	0.0935
BR-A4BD4F3	26039.9405	-41.1807	180.0250	26039.9339	-41.1807	180.0266	-0.0068	0.0000	0.0016	0.0101
BR-A4BD4F4	26179.7682	-42.4296	180,0220	26179.8017	-42.4296	180.0276	0.0335	0.0000	0.0056	0.0371
BR-A4BD4F5	25880.2864	-42.4676	180.0220	25880.3275	-42.4676	180.0168	0.0411	-0.0000	-0.0052	0.0415
BR-A4BF3F1	25777.0506	-35.8687	166.0280	25777.0588	-35.8687	166.0233	0.0082	-0.0000	-0.0047	0.0096
BR-A4BF3F2	25956.8777	-35.8512	166.0040	25956.9238	-35.8512	100.0170	0.0461	0.0000	0.0130	0.0496
BR-AABF3F3	20905.1//8	-37.0035	165.9930	20905.1000	-37.0030	100.9374	-0.0213	0.0000	-0.0000	0.0090
BR-AABF3F4	26027.2061	-38.2491	100.0280	20027.1080	-38.2491	100.9744	-0.03/5	-0.0000	-0.0530	0.0000
DR-ANDF3F0	20847.8001	-38,2831	160.0440	20847.7274	-38.2831	160,9970	0.0727	-0.0000	-0.04/0	0.0375
BR-A4SD1F1	25604.1100	-30 1101	70 1022	25804.0033	-30 1101	70 2025	0.0208	0.0000	0.0102	0.0070
BR-44SD1E5	26092 2231	39 0763	70 6005	26002 3226	30 0763	70 4102	0.0005	0.0000	.0.0003	0 1407
BR.44BE4E1	25030 4870	43 7002	166 0340	25030 4607	43 7092	166 0540	-0.0063	0.0000	0.0101	0.0203
BR-A4BE4E2	26119 4032	43,8075	166 0327	26119 4307	43,8075	166 0242	0.0275	0.0000	-0.0085	0.0295
BR-A4BF4F3	26032.2716	-45,0031	166.0683	26032,2898	-45.0031	166.0444	0.0182	0.0000	-0.0239	0.0304
BR-A4BF4F4	26119,4173	-46,1987	166.0329	26119,4055	-46,1987	166.0575	-0.0118	0.0000	0.0246	0.0275
BR-A4BF4F5	25939.4566	-46.2070	166.0595	25939.4670	-46.2070	166.0526	0.0104	-0.0000	-0.0069	0.0127
BR-A4BD5F1	25879.9852	47.5375	180.0202	25879.9707	-47.5375	180.0230	-0.0145	-0.0000	0.0028	0.0164
BR-A4BD5F2	26179.6680	-47.5750	179.9871	26179.6626	47.5750	179,9783	-0.0054	0.0000	-0.0088	0.0104
BR-A4BD5F3	26040.2376	-48.8240	180.0798	26040.2568	-48.8240	180.0828	0.0192	0.0000	0.0028	0.0195
BR-A4BD5F4	26139.8117	-50.0925	180.0265	26139.8728	-50.0925	179,9907	0.0611	0.0000	-0.0358	0.0709
BR-A4BD5F5	25839.6539	-50.0840	180.0128	25839.6978	-50.0840	179.9890	0.0439	0.0000	-0.0238	0.0545
BR-A4BF5F1	25848.4441	-51.7236	166.0760	25848.4269	-51.7236	165.9671	-0.0172	-0.0000	-0.1089	0.1110
BR-A4BF5F2	26027.8689	-51.7576	166.0210	26027.8713	-01.7576	165.9254	0.0024	0.0000	-0.0956	0.0968
BR-AABFOF3	25905.7060	-02.9433	100.0027	25905./18/	-02.0433	105.91/3	0.012/	-0.0000	-0.0804	0.0800
DD.AADESES	20907.4783	-04.1000	165.9702	20907.0008	-04,1000	100.9019	0.0275	0.0000	-0.0183	0.0337
BR-A4SD2E1	25054 9890	-04.1301	150.0010	25777.0004	-50 0127	150.0107	-0.0011	-0.0000	0.0203	0.0500
ED.AASD2FT	20002 4075	-50 0247	70 4720	20007-0040	50 0247	70 4042	0.0087	0.0000	0.00001	0.0003
BR-44502F5	26092 3609	-50 0352	70 4100	26092 2824	-50 0352	70 4074	-0.0784	0.0000	-0.0116	0.0807
BR.44BDAF1	25877 AR07	55 5379	190 0438	25877 7350	55 5378	170 0882	0.0482	0.0000	0.0556	0.0723
BR-A4BD6F2	25975,4854	-55.6177	179,9885	25975.5281	+55.6177	179,9359	0.0427	0.0000	-0.0526	0.0680
BR-A4BD6F3	25800.3154	-58.8554	180.0616	25800.3814	-56.8554	180.0010	0.0460	0.0000	-0.0606	0.0784
BR-A4BD0F4	25863.3282	-58.1481	180.0368	25863.3626	-58.1481	179,9882	0.0344	-0.0000	-0.0506	0.0839
BR-A4BD6F5	25564.1532	-58.0973	180.0557	25564.1598	-58.0973	180.0112	0.0064	-0.0000	-0.0445	0.0470
BR-A4BF6F1	25538.4162	-59.5239	166.0680	25538.4359	-59.5239	166.0027	0.0197	0.0000	-0.0853	0.0682
BR-A4BF6F2	25716.3583	-59.5851	166.0650	25716.3667	-59.5851	166.0073	0.0084	0.0000	-0.0577	0.0595
BR-A4BF6F3	25558.5967	+60.7650	166.0430	25558.5887	+60.7650	165.9928	-0.0080	0.0000	+0.0502	0.0524
BR-A4BF6F4	25573.7687	-61.9994	165.9810	25573.7436	-61.9994	166,0005	-0.0251	0.0000	0.0195	0.0318
BR-A4BFOFS	25394.8483	-01.9548	105.9740	25394.8322	-01.9048	105.9000	-0.0101	0.0000	-0.0080	0.0198
BR-A4CY3F1	25917.3951	-55.0162	150.0870	25917.4182	-55.0162	150.0459	0.0231	0.0000	-0.0411	0.0493
PR-A4CV3E2	25/62.4342	-04.9940	00.0010	25/52.4901	-54.0000	09.0399	0.00004	0.0000	-0.0308	0.0000
BR-A4CV3E4	25967.3008	-55 0221	-07 8500	25067 3060	-55 0221	-07 8410	0.0723	0.0000	0.0021	0.0757
BR-A4BD7F1	25253.0178	-83 3597	180.0050	25253.0438	-83 3597	179.9514	0.0262	-0.0000	-0.0536	0.0800
BR-A4BD7F2	25547 0210	-83 4945	180 0030	25547 9551	-63 4845	179 9850	0.0341	0.0000	-0.0380	0.0511
BR-A4BD7F3	25335.9716	-64.7151	179.9820	25335.9991	-64.7151	179.9415	0.0275	-0.0000	+0.0205	0.0343
BR-A4BD7F4	25360.4407	-66.0387	179.9970	25360.4420	-66.0387	180.0028	0.0013	0.0000	0.0056	0.0135
BR-A4BD7F5	25063.3307	-65.9420	179.9920	25063.3168	-05.9420	179.9990	-0.0139	0.0000	0.0070	0.0174
BR-A4BF7F1	24978.3208	-87.8235	166.0459	24976.2774	-87.6235	165.9852	-0.0432	0.0000	-0.0807	0.0758
BR-A4BF7F2	25152.2639	-67.7114	166.0682	25152.2631	-87.7114	165,9855	-0.0008	-0.0000	-0.0827	0.0847
BR-A4BF7F3	24962.1625	-68.8943	166.0702	24962,1586	-68.8943	166.0012	-0.0039	-0.0000	-0.0690	0.0891
BR-A4BF7F4	24943,3934	-70.1587	165,9920	24943.3824	-70.1587	165.9584	-0.0110	0.0000	+0.0336	0.0357
BR-A4BF7F5	24765.9204	-70.0878	165.9647	24765.9072	-70.0878	165.9371	-0.0132	0.0000	-0.0276	0.0306
BR-A4CX2F1	25523.0857	-62.8705	124.0680	25523.0981	-62.8705	124.1344	0.0124	-0.0000	0.0684	0.0700
BR-A4CX2F2	25328.5307	-02.8157	124.0280	20328.4911	-02.8157	124.0550	-0.0396	-0.0000	0.0270	0.0476
BR-A4GA2F3	20019.1929	-02.0030	74 2800	25074.0443	-02.8830	74 1707	-0.1400	-0.0000	0.13/3	0.1000
BR.Addeard	25170 0054	-02.0038	150 0010	25120 0000	-02.0038	150 0120	0.0744	0.0000	0.0003	0.1080
BR.445E2E4	25264 1421	-86 8980	-79 5340	25264 1070	88 8880	-79 6183	-0.0351	-0.0000	-0.0842	0.0013
BR-A4SE2E5	25264 1500	-00 8850	79.4700	25264 1080	-00 8850	79.4328	0.0390	0.0000	-0.0372	0.0547
BR-A4BD8F1	24358.3105	+75.1759	180,0100	24358.3027	+75.1759	180.0365	-0.0078	-0.0000	0.0285	0.0293
BR-A4BD8F2	24653.4184	-75.3044	180,0020	24653,4249	-75.3044	180.0067	0.0065	-0.0000	0.0047	0.0170
BR-A4BD8F3	24443,2358	-78,5816	180,0070	24443,2368	-76.5816	179,9931	0.0010	-0.0000	-0.0130	0.0185
BR-A4BD8F4	24470.0782	-77.9531	180.0070	24470.0193	-77.9531	179.9972	-0.0589	0.0000	-0.0098	0.0593
BR-A4BD8F5	24172.7318	-77.8561	180.0060	24172.6933	-77.8561	180.0094	-0.0385	-0.0000	0.0034	0.0425
BR-A4CX3F1	24590.8398	-72.0821	124.0220	24590.8311	-72.0821	124.0843	-0.0085	0.0000	0.0423	0.0443
BR-A4CX3F2	24784.1468	-72.1570	124.0460	24784.1993	-72.1570	124.0737	0.0525	0.0000	0.0277	0.0597
BR-A4CX3F3	24835.3453	-72.1769	74,3210	24835.3859	-72.1789	74.3739	0.0208	-0.0000	0.0529	0.0805
BR-A4CX3F4	24835.3545	-72.1768	-74,4330	24835.4095	-72.1768	-74.3892	0.0550	0.0000	0.0438	0.0704

SA 2013.03.22 (x64)

WORKING FRAME: A::BOOSTER

Page 10 / 22
CYU ANALY	/SIS-Auto Vec	tors: Groups:	REFEREN	Vector Gro CE FINAL to FI	NIP D WO BEAM	DIRECTION	VECTOR	WO DS C	S AND BP	м
Name		Begin			End			Del	13	
	R1	Thetal	Z1	R2	Theta2	Z2	dR	dTheta	dZ	Mag
BR-A4CY4F1	24639.4066	-74 1884	150,1400	24639 3968	-74 1884	150,1878	-0.0098	-0.0000	0.0478	0.0498
BR-A4CY4F2	24475.8328	-74,1182	150.0400	24475,7792	-74.1182	149,9948	-0.0538	-0.0000	-0.0454	0.0710
BR-A4CY4F3	24689,1549	-74 1832	97,9500	24689,1596	-74.1832	98.0203	0.0047	-0.0000	0.0703	0.0734
BR-A4CY4F4	24689,1984	-74.1826	-98,1040	24889.2887	-74.1828	-98.0018	0.0703	0.0000	0.1022	0.1258
BR-A40D2F1	24652,1165	-71.3060	230,1577	24852.1547	-71.3060	230,1605	0.0382	0.0000	0.0028	0.0420
BR-A40D2F2	24694 3213	-70,7811	230 1125	24694 4036	-70,7811	230 0952	0.0823	-0.0000	-0.0173	0.0864
BR-A4QD2F3	24880.9749	+70.8634	229,9693	24881.0300	-70.8634	229,9782	0.0551	-0.0000	0.0089	0.0582
BR-A40D2F4	24839 0872	-71.3846	230.0181	24839,1228	-71.3846	230.0435	0.0356	0.0000	0.0274	0.0471
BR-A4QG2F1	24505,9033	-73.3951	230.0486	24505.8970	-73.3951	230.0402	-0.0083	-0.0000	-0.0084	0.0178
BR-A4QG2F2	24539,7338	-72.8635	229,9899	24539,7094	-72.8635	229,9532	-0.0242	0.0000	-0.0367	0.0453
BR-A4QG2F3	24727.6715	-72,9304	230.0141	24727.5855	-72,9304	229 9750	0.0140	-0.0000	-0.0391	0.0419
BR-A4QG2F4	24693,9755	-73,4580	230.0599	24693,9760	-73.4580	230.0408	0.0005	-0.0000	-0.0193	0.0197
BR-A4QF2F3	24306.0508	-79,1508	229,9850	24308.0825	-79,1506	229,9717	0.0117	-0.0000	-0.0133	0.0178
BR-ISCXW1F1	24039.2638	-80.0590	132.5320	24039.2196	-80.0590	132,4834	-0.0442	-0.0000	-0.0486	0.0657
BR-ISCXW1F2	24232,2869	-80,1396	132,5650	24232.2484	-80,1396	132,5228	-0.0385	0.0000	-0.0422	0.0588
BR-ISCXW1F3	24283.5915	-90,1607	82,4530	24283,5668	-80,1607	82,4163	-0.0247	-0.0000	-0.0367	0.0461
BR-ISCXW1F4	24283.5662	-80.1610	-82.3710	24283.5582	-80,1610	-82.4045	-0.0080	0.0000	-0.0335	0.0350
BR-ISKIC1F1	24236.2383	-80.4643	-88.0000	24238.2150	-80,4643	-86.0368	-0.0233	-0.0000	-0.0368	0.0438
BR-ISKIC1F2	24165.7654	-81.5165	-86.0000	24165.7056	-81.5165	-86.0095	-0.0598	0.0000	-0.0095	0.0621
BR-ISKIC1F3	23918.5292	-81,4282	-88.0000	23918.4893	-81.4282	-86.0212	-0.0399	-0.0000	-0.0212	0.0456
BR-ISKIC1F4	23989.7284	-80.3654	-86.0000	23989.6805	-80.3654	-86.0262	-0.0479	-0.0000	-0.0262	0.0556
BR-ISKIC2F1	23975.9645	-85.4787	-86.0000	23975.9315	-85.4787	-85.9885	-0.0330	0.0000	0.0115	0.0389
BR-ISKIC2F2	23944.8941	-88.5522	-88.0000	23944.6719	-86,5522	-86.0321	-0.0222	0.0000	-0.0321	0.0410
BR-ISKIC2F3	23695.1513	-86.5159	-86.0000	23695.1106	-86.5159	-86.0227	-0.0407	-0.0000	-0.0227	0.0477
BR-ISKIC2F4	23726.7507	-85.4312	+86.0000	23726.6963	-85.4312	-85.9989	-0.0544	-0.0000	0.0011	0.0580
BR-ISSMP1F1	23876.5626	-89.7611	124.8320	23876.5623	-89.7611	124.8185	-0.0003	-0.0000	+0.0135	0.0135
BR-ISSMP1F2	23878,6007	-90.7692	124.8279	23878,5933	-90.7692	124,8301	-0.0074	-0.0000	0.0022	0.0121
BR-ISSMP1F3	23778.4405	-90.7718	124.8911	23778.4342	-90.7718	124.8787	-0.0063	0.0000	-0.0124	0.0156
BR-ISSMP1F4	23776,5634	-89.7601	124.8820	23776.5394	-89.7601	124,8577	-0.0240	-0.0000	-0.0243	0.0343
BR-A1QF1F1	24119.2378	-100.9341	230.0942	24119.2983	-100.9341	230.0323	0.0605	0.0000	-0.0619	0.0867
BR-A1QF1F2	24076.5697	-100.3969	230.0564	24076.6123	+100.3969	229.9981	0.0426	-0.0000	+0.0583	0.0739
BR-A1QF1F3	24263.5042	-100.3155	230.0517	24263.5446	-100.3155	230.0293	0.0404	0.0000	-0.0224	0.0469
BR-A1QF1F4	24305.8222	-100.8489	230.0909	24305.8573	+100.8489	230.0518	0.0351	0.0000	-0.0391	0.0549
BR-ISCXW2F1	24039.2396	-99.9403	132.5440	24039.3097	-99.9403	132,0104	0.0701	-0.0000	0.0714	0.1007
BR-ISCXW2F2	24232.4810	-99.8010	132.5530	24232.5033	-99.8010	132.0449	0.0223	-0.0000	0.0919	U.UPOP
BR-ISCXW2F3	24283.0200	-99.8403	82 2870	24283.0041	-99.8403	82.3585	0.0335	-0.0000	0.0715	0.0804
BR-ISCAW2F4	29283.0821	-99.8410	-82.40/0	24283.7320	-99.8410	-82.4183	0.0000	0.0000	0.0467	0.0700
BR-ISKIUSF1 BD (BV)C3E3	23904.2334	-93.4400	-80.9840	23904,1920	-93.4400	-80.9702	0.1002	0.0000	0.0143	0.0443
DRHOKIGSF2	23885,4010	-84.5185	-00.0000	23880.0003	-84.0180	-00.8800	0.1085	-0.0000	0.0015	0.1510
DR-IONIGOPO	23130.2028	-84.00/1	+80.0000	23730.3000	-84.0071	-60.8700	0.1470	-0.0000	0.0284	0.1010
DD IOVICAEL	23/04.0300	-83.4527	-80.0000	23/04.0041	-93.4527	-80.9030	0.0310	0.0000	0.0304	0.1005
DD IOVICAED	24100./302	-85.4534	-80.0000	24100.0404	-86.46.34	-80.0200	0.1042	-0.0000	-0.0200	0.0500
BD-IGVICAE2	23000 7100	-00 6347	-86,1804	222000 7487	-99.0308	-00.1002	0.03360	0.0000	0.0362	0.0555
BR-IGVICAEA	20000.7100	-99.0347	-86.0000	23258.7407	-99.0347	-86.0001	0.02/8	-0.0000	-0.0404	0.00001
PEC FO	22551 0821	8 5500	142 2623	23551 0543	A 5500	142 2570	-0.0070	0.0000	-0.0021	0.0105
PEC.EA	24161 0227	1 0960	120 5788	24151 0427	1.0980	120 4025	0.0110	0.0000	0.0041	0.0180
DEC.ES	24160 2024	1.4212	DRA FEEE	24150 2220	1.4212	284 4222	0.0408	0.0000	0 1222	0 1408
RECIER	24101 0050	1 8916	350 3790	24101 8407	1 8916	350 3224	0.0553	0.0000	-0.0566	0.0813
REC-ET	24299 2985	5 6639	350 4900	24299 2330	5 6638	350 5489	-0.0855	-0.0000	0.0490	0.0823
RECER	24282 8783	6 1424	282 4197	24282 8040	6 1424	282 4471	-0.0714	0.0000	0.0294	0.0791
RFC-F1	24301.7702	6 3434	133,1811	24301.7814	6 3434	133,1606	0.0112	-0.0000	-0.0205	0.0289
					0.0104				0.0000	

Part 1: Deviations of Key Elements

SA 2013.03.22 (x64)

WORKING FRAME: A::BOOSTER UNITS: Millimeters Page 11 / 22

Part 2: Deviations of	of All	Elements
-----------------------	--------	----------

Statistic	dR	dTheta	dZ	Mag
Min	-2.6874	-0.0044	-1.3663	0.0081
Max	2.1919	0.0035	2.4679	2.8553
Average	0.0054	-0.0000	0.0398	0.1909
StdDev from Avg	0.1838	0.0006	0.2379	0.3442
StdDev from Zero	0.1839	0.0006	0.2412	0.3936
RMS	0.1838	0.0006	0.2410	0.3934

	CYU AN	ALYSIS Auto	Vectors: Gr	tor Group oups: REFERE		to FID ONLY	e.			
Name		Begin			End			Delt	3	
	R1	Theta1	Z1	R2	Theta2	Z2	dR	dTheta	dZ	Ma
BR-A1BD1F1	24172.5139	-102.1422	180.0001	24172.4877	•102.1423	180.0052	-0.0262	-0.0000	0.0051	0.033
BR-A1BD1F2	24469.7548	-102.0448	179.9768	24469.7333	-102.0448	179.9795	-0.0213	-0.0000	0.0027	0.023
BR-A1BD1F3	24443.0083	-103.4165	180.0013	24443.0194	-103.4165	179.9774	0.0111	-0.0001	-0.0239	0.034
BR-A1BD1F4	24653.3163	-104.6938	180.0049	24653.3509	-104.6937	179.9628	0.0346	-0.0002	-0.0421	0.088
BR-A1BD1F5	24358.3550	-104.8224	179,9910	24358.3739	+104.8225	179.9667	0.0189	-0.0002	-0.0242	0.076
BR-A1BPM1F1	24525.6589	-105.2615	71.0130	24525.5650	-105.2598	71.0792	-0.0939	0.0017	0.0662	0.719
BR-A1BPM1F2	24532.6648	-105.3959	71.0130	24532.6798	-105.3942	71.0795	0.0148	0.0018	0.0865	0.765
BR-A1CX1F1	24590.8273	-107.9164	124.0440	24590.6879	-107.9171	124.0710	0.0606	-0.0007	0.0270	0.293
BR-A1CX1F2	24764.0803	-107.8421	124.0540	24784.0989	-107.8424	124.0420	0.0188	-0.0003	-0.0121	0.121
BR-A1CX1F3	24835.3943	-107.8232	74.2400	24835.4100	-107.8235	74.2382	0.0157	-0.0003	-0.0018	0.134
BR-A1CX1F4	24835.4954	-107.8227	-74.1520	24835.4955	-107.8232	-74,1546	0.0001	-0.0005	-0.0028	0.216

WORKING FRAME: A::BOOSTER UNITS: Millimeters

Part 2:	Deviations	of All	Elements
---------	------------	--------	----------

-	CYLLAN		Vectors G	ctor Group			/			
Name	CTOAN	Begin	Vectors. C	roups Reren	End	IO FILL ONL		Delt	3	
	R1	Theta1	Z1	R2	Theta2	Z2	dR	dTheta	dZ	Mag
BR-A1CY1F1	24639.6292	-105.8323	150.1020	24639.4872	-105.8323	150.1509	-0.1420	0.0000	0.0489	0.151
BR-A1CY1E3	24680 1601	-105 8167	97 9750	24689 1112	-105 8166	97 9543	-0.0578	0.0001	-0.00003	0.088
BR-A1CY1F4	24689.1859	-105.8173	-98.0680	24689.1637	-105.8174	-98.0748	-0.0223	-0.0000	-0.0088	0.030
BR-A1QD1F1	24893.9380	-109.2179	230.0469	24694.0186	-109.2180	230.0352	0.0826	-0.0001	-0.0117	0.098
BR-A1QD1F2	24651.8040	-108.6928	230.0129	24651.7631	-108.6929	230.0444	-0.0410	-0.0001	0.0315	0.082
BR-A10D1F3	24030.0203	-108.0140	230.1978	24838.7080	-108.0140	230,1008	-0.0024	-0.0000	0.0128	0.0550
BR-A1QG1F1	24539.7704	-107.1353	230.1092	24539.7600	-107,1354	230.1075	-0.0104	-0.0001	-0.0017	0.038
BR-A1QG1F2	24505.9188	-106.6038	230.0518	24505.9058	-106.6039	230.0486	-0.0130	-0.0001	-0.0032	0.0478
BR-A1QG1F3	24694.0366	-106.5409	229.9606	24694.0374	-106.5409	229.9546	0.0007	-0.0000	-0.0060	0.014
BR-A1QG1F4	29/2/.0000	+107.0084	100.0450	29727.0030	-107.0684	100 1357	-0.0020	-0.0001	-0.0051	0.032
BR-A1BD2F2	25360.3975	-113,9598	179,9980	25360.3744	-113,9597	180.0597	-0.0232	0.0001	0.0617	0.079
BR-A1BD2F3	25335.9962	-115.2834	180.1240	25335.9591	-115.2834	180.1427	-0.0371	-0.0000	0.0187	0.042
BR-A1BD2F4	25548.0188	-116.5140	180.0210	25548.0080	-116.5142	180.0193	-0.0108	-0.0002	-0.0017	0.106
BR-A1BD2F5	25253.2352	-116.6399	180.0480	25253,1972	-116.6401	180.0431	-0.0380	-0.0003	-0.0049	0.121
BR.A1BE1E2	24043 2682	100 8400	188.0312	24043 2281	-109.9117	166.0223	-0.0380	0.0004	-0.00200	0.160
BR-A1BF1F3	24961,9330	-111,1055	165,9968	24981.8982	-111,1053	166.0345	-0.0367	0.0003	0.0377	0.124
BR-A1BF1F4	25152.0524	-112.2882	166.0465	25152.0346	-112.2881	166.1151	-0.0178	0.0001	0.0686	0.079
BR-A1BF1F5	24976.1074	-112.3760	166.0205	24976.0748	-112.3759	166.1204	-0.0326	0.0001	0.0999	0.111
BR-A1BPM2F1	25154.5627	-113.4571	71.0130	25154.6313	-113.4580	72.1371	0.0686	-0.0009	1.1241	1.187
BR-AIBFM2F2 BR-AICY2E1	25100.4809	-113.0804	124 0560	25100.5048	-113.38/4	124 0719	0.0189	0.0001	0.0158	0.058
BR-A1CX2F2	25523 4311	-117 1304	124.0570	25523 3753	-117 1305	124 0220	-0.0558	-0.0001	-0.0350	0.072
BR-A1CX2F3	25574.8155	-117.1161	74.1720	25574.7319	-117.1161	74.1767	-0.0836	-0.0000	0.0047	0.083
BR-A1CX2F4	25574.7498	-117.1158	-74.2440	25574.6626	-117.1158	-74.2828	-0.0870	0.0000	-0.0388	0.095
BR-A1SF1F1	25129.3458	-113,1788	158.9550	25129.3730	-113,1785	159.0099	0.0272	0.0003	0.0549	0.133
BR-AISFIF2	24884.3800	-113.2430	79,8760	24884.3000	-113.2432	79.1780	-0.0288	0.0003	0.0100	0.047
BR-A1BD3F1	25563.7493	-121.9036	180.0201	25563.6728	-121,9036	180,1140	-0.0764	-0.0000	0.0939	0.121
BR-A1BD3F2	25863.0053	-121,8526	179.9929	25862.9743	-121.8526	180.0521	-0.0309	0.0000	0.0592	0.069
BR-A1BD3F3	25800.1328	-123.1449	180.0460	25800.1212	-123.1451	180.0707	-0.0116	-0.0002	0.0247	0.086
BR-A1BD3F4	25975,5532	-124,3820	180.0818	25975.0038	-124.3829	180.0660	0.0505	-0.0003	-0.0159	0.136
BR-A1BE2E1	25304 5508	-118 0449	166 0340	25304 4880	-118 0448	188 0530	-0.0718	0.0003	0.0143	0.164
BR-A1BF2F2	25573.4828	-118.0002	166.0230	25573.4484	-117,9999	166.0161	-0.0142	0.0003	-0.0089	0.141
BR-A1BF2F3	25558.4534	-119.2346	166.0300	25558.4450	-119.2344	166.0417	-0.0084	0.0002	0.0117	0.082
BR-A1BF2F4	25716.0580	-120.4145	166.0250	25716.0729	-120.4145	166.0502	0.0149	0.0001	0.0252	0.047
BR-A18F2F5	25538.1177	-120,4758	71 0120	25538.0942	-120.4758	71,6621	-0.0235	0.0000	0.0265	0.037
BR-A1BPM3F2	25888 3232	-121.2285	71.0130	25888.2589	-121.2282	71.6598	-0.0844	0.0002	0.6466	0.658
BR-A1CY2F1	25917.4688	-124.9845	150.0930	25917.4643	-124.9844	150.0717	-0.0045	0.0001	-0.0213	0.033
BR-A1CY2F2	25752.5263	-125.0051	150.1500	25752.5222	-125.0050	150.1016	-0.0041	0.0001	-0.0484	0.065
BR-A1CY2F3	25967.3244	-124.9785	97.9020	25967.3675	-124.9785	97.8891	0.0431	-0.0000	-0.0129	0.045
0D.A1004214	20907.3021	129,0160	100 0811	25907.3870	-124.8/00	170 0000	0.0248	0.0000	0.00000	0.031
BR-A1BD4F2	26139.5822	+129,9072	179.9892	26139.4836	+129,9072	179.9262	-0.0988	0.0001	-0.0629	0.119
BR-A1BD4F3	26040.0923	+131.1756	180.0255	26040.0011	-131.1757	179.9908	-0.0912	-0.0001	-0.0347	0.111
BR-A1BD4F4	26179.7222	-132.4246	179.9943	26179.6557	-132,4249	179.9603	-0.0005	-0.0003	-0.0340	0.143
BR-A18D4F5	25880.2282	-132,4624	188,0001	25880,1509	-132.4626	1/9.9997	-0.0713	-0.0003	-0.0117	0.138
BR-A1BF3F2	25957.3303	-125.8448	100.0034	25957.4677	-125.8445	165,9913	0.1374	0.0002	-0.0721	0.189
BR-A1BF3F3	25905.4938	+127.0568	166.0592	25905.5602	-127.0568	165.9690	0.0664	-0.0000	-0.0902	0.113
BR-A1BF3F4	26027.5372	-128.2426	166.0203	26027.5591	-128.2427	165.9486	0.0219	-0.0000	-0.0717	0.078
BR-A1BF3F5	25848.2573	-128.2768	166.0344	25848.2682	-128.2768	185.9778	0.0109	-0.0000	-0.0566	0.058
BR-AIBPM4F1	25964.3403	-129.3040	71.0130	25904.3300	-128.3047	71.2084	0.0038	-0.0001	0.2004	0.203
BR-A1SD1F1	25955.0964	-129.0891	159.0858	25955,1778	-129.0892	159,1227	0.0814	-0.0001	0.0369	0.093
BR-A1SD1F1	25955.0964	-129.0891	159.0858	25955.1360	-129.0892	159.1703	0.0398	-0.0001	0.0845	0.097
BR-A1SD1F2	25817.6122	-129.1123	79.4166	25817.5306	-129.1125	79.4120	-0.0816	-0.0002	-0.0048	0.108
BR-A1SD1F4	26092.3789	+129.0672	-79.8312	26092.4914	-129.0670	-79.6807	0.1125	0.0002	0.1505	0.207
BR-A1SD1F5	26092.7745	-129.0875	79.1451	26092.8290	-129.0677	79 1047	0.1114	+0.0001	0.0498	0.135
BR-A1BF4F1	25939,5377	-133,7926	166.0250	25939,5434	-133,7925	166.0315	0.0057	0.0001	0.0065	0.084
BR-A1BF4F2	26119.5538	-133.8010	166.0170	26119.5374	-133.8008	166.0103	-0.0163	0.0001	-0.0067	0.062
BR-A1BF4F3	26032.2343	+134.9965	165.9510	20032.1833	-134,9965	165.9480	-0.0510	0.0000	-0.0030	0.052
BR-A18F4F4	20119.3009	-130,1921	100.0440	20119.3144	-130,1922	100.9999	-0.0425	-0.0001	-0.0441	0.089
BR-A18D5F1	25879.8938	-137.5312	180.0100	25879.9253	-137.5310	179.9784	0.0316	0.0002	-0.0318	0.085

WORKING FRAME: A::BOOSTER UNITS: Millimeters Page 13 / 22

	CYU AN	ALYSIS Aut	ve vectors: G	cior Group roups: REFER	Y					
Name	RI	Begin Theta1	71	Rol	End Theta2	72	del	dThetal	ta di71	Man
BR-A1BD5F3	26039.7835	-138.8179	180.0090	26039.8100	-138.8178	180.0292	0.0265	0.0000	0.0202	0.0388
BR-A1BD5F4	26139.4826	-140.0863	180.0070	26139.4975	-140.0864	180.0369	0.0149	-0.0001	0.0299	0.0528
BR-A1BD5F5	25839,4005	-140.0778	180.0000	25839.3834	-140.0779	180.0325	-0.0171	-0.0001	0.0325	0.0450
BR.A1BE5E2	28027 5213	-141 7512	185 9890	26027 5350	141 7513	165 0043	0.0034	-0.0001	0.0063	0.0474
BR-A1BF5F3	25905.2048	-142.9367	166.0990	25905.1822	-142.9389	166.0883	-0.0225	-0.0002	-0.0007	0.0904
BR-A1BF5F4	25957.0171	-144.1490	166.0920	25956.9928	-144,1493	166.0728	-0.0243	+0.0004	-0.0192	0.1641
BR-A1BF5F5	25777.0887	-144.1316	166.0840	25777.0663	-144.1319	166.0815	-0.0204	+0.0003	-0.0025	0.1442
BR-A18PM5F2	25984 0481	-140.8290	71 0130	25964 0866	140 8289	70.8778	0.0385	0.0000	-0.0870	0.1423
BR-A1SD2F1	25954.6734	-140.9080	158,9050	25954.6901	-140.9083	158.9542	0.0167	-0.0003	0.0492	0.1281
BR-A1SD2F4	20091.9850	-140.9313	-79.7260	26092.0485	-140.9303	-79.7337	0.0629	0.0010	-0.0077	0.4378
BR-A1SD2F5	26092.1256	-140.9309	79.2170	26092.1575	-140.9307	79.2627	0.0319	0.0002	0.0457	0.1170
BR-A1BD6F2	25974 9890	-145.8112	180 0238	25975 0288	-145.6110	180 0033	0.0398	0.0002	-0.0205	0.1048
BR-A1BD6F3	25799.7175	-146.8489	179.9885	25799,7454	-146.8490	180.0239	0.0279	-0.0000	0.0354	0.0478
BR-A1BD6F4	25862.5685	-148.1414	180.0296	25862.6050	-148.1416	180.0559	0.0366	-0.0002	0.0263	0.1024
BR-A1BD0F5	25563.4841	-148.0905	180.0260	25563.5106	-148.0906	180.0340	0.0266	-0.0001	0.0080	0.0686
BR-A1BF6F2	25715 6803	-149.5791	166.0190	25715,7634	-149.5791	166.0454	0.0831	-0.0000	0.0274	0.0881
BR-A1BF0F3	25557.6224	-150.7588	166,1380	25557.6689	-150.7591	166.1511	0.0465	-0.0003	0.0131	0.1376
BR-A1BF0F4	25572.7059	-151.9935	166.0250	25572.7268	-151.9939	166.0135	0.0210	+0.0003	-0.0115	0.1508
BR-A1BF0F0 DD.A1DDMAE1	25393.7623	-151.9480	71 0120	25393.7252	-101.9459	71 7994	-0.0371	-0.0003	-0.0225	0.1503
BR-A1BPM6F2	25657.6885	-148.8934	71.0130	25657.8208	-148.8953	71,7200	0.1321	-0.0019	0.7070	1.1194
BR-A1CY3F1	25916.8582	-145.0100	150.0380	25916.9281	-145.0099	150.0493	0.0698	0.0001	0.0113	0.0959
BR-A1CY3F2	25752.4881	-144.9885	149.9850	25752.5120	-144,9883	149.9978	0.0239	0.0001	0.0128	0.0711
BR-A1CY3F3 BR-A1CY3F4	25900.7544	-145.0100	97.9890	25900.7933	-145,0101	98.0063	0.0388	-0.0001	0.0173	0.0520
BR-A1BD7F1	25252.0903	-153.3526	179,9810	25252.0644	-153.3523	180.0682	-0.0260	0.0003	0.0872	0,1610
BR-A1BD7F2	25546.8396	+153.4785	180.0080	25546.8330	-153.4783	180.0340	-0.0065	0.0002	0.0260	0.1084
BR-A1BD7F3	25335.0911	-154,7091	179,9750	25335.0962	-154,7089	180.0373	0.0051	0.0002	0.0623	0.0952
BR-A1BD7F5	25062.4037	-100.0327	180.0500	25062.4012	-100.0320	180.0140	-0.00230	0.0001	0.0120	0.0401
BR-A1BF7F1	24974.9483	-157.6178	165.9790	24975.0035	-157.6177	166,1457	0.0552	0.0001	0.1667	0.1790
BR-A1BF7F2	25150.9211	-157.7056	165.9660	25150.9524	-157.7055	166.0729	0.0313	0.0001	0.1069	0.1232
BR-A1BF/F3	24960.7173	-158.8882	100.0110	24960.7574	-108.8883	166.0718	0.0402	-0.0001	0.0008	0.0828
BR-A1BF7F5	24764.5958	-160.0819	166.0780	24764.6082	-160.0821	166.0785	0.0124	-0.0002	0.0005	0.0877
BR-A1BPM7F1	25165.3992	+156.4073	71.0130	25165.3999	-156,4079	71.2421	0.0007	+0.0006	0.2291	0.3450
BR-A1BPM7F2	25153.4697	-156.5366	71.0130	25153.4852	-156.5371	71.2287	0.0154	-0.0008	0.2157	0.3317
BR-A1CX3F2	25522 4825	-152.8833	123,0000	25522 4003	-152.8834	124.1201	0.00752	-0.0001	0.0041	0.0350
BR-A1CX3F3	25573.9816	-152.8771	73.9130	25573.9507	-152.8769	73.9819	-0.0309	0.0002	0.0689	0.1299
BR-A1CX3F4	25573.9555	-152.8782	-74.0350	25573.9083	-152.8779	-74.0312	-0.0472	0.0002	0.0038	0.1114
BR-A1SF2F1 BD.A10E2E4	25127.5143	-156.8216	158.9130	25127.6482	-156.8215	159.1134	0.1339	0.0001	0.2004	0.2459
BR-A1SF2F5	25262 6930	-156,8831	79,5000	25282.7553	-156,8829	79.5842	0.0822	0.0002	0.0842	0.1310
BR-A1BD8F1	24356.8621	+165.1697	180.0740	24356.8551	+165,1695	180.1397	-0.0070	0.0002	0.0657	0.1019
BR-A1BD8F2	24651.9735	-165.2982	180.0687	24651.9584	-165.2981	180.1411	-0.0152	0.0002	0.0724	0.1028
BR-A1BD8F3 BR-A1BD8F4	24441.0003	-100.0704	180.0287	24441.0399	-100.0704	180.0183	-0.0104	-0.0000	-0.0104	0.0204
BR-A1BD8F5	24171.2654	-167.8500	179,9871	24171.2241	-167.8501	179.9027	-0.0413	-0.0001	-0.0844	0.0874
BR-A1CY4F1	24638.1242	-184,1832	150.0700	24638.0908	-164.1629	150,1158	-0.0334	0.0003	0.0458	0.1444
BR-A1CY4F2	24474.7134	-164,1123	150.0680	24474.6208	-164.1124	150.0634	-0.0926	-0.0001	-0.0046	0.0966
BR-A10D2F1	24650.8377	-161.3000	230.0940	24650,7727	-161.3001	230.0834	-0.0850	-0.0001	-0.0108	0.0791
BR-A1QD2F2	24692.8712	-160.7751	230.0587	24692.8448	-160.7748	230.0316	-0.0264	0.0002	-0.0271	0.1013
BR-A1QD2F3	24879.5919	-160.8571	230.0317	24879.5813	-160.8568	230.0279	-0.0107	0.0002	-0.0038	0.1082
BR-A1002F4	24837.9000	-101.3/83	230.0207	24837.8300	-101.3/82	230.0000	-0.0705	0.0000	0.0398	0.0515
BR-A1QG2F2	24538.6616	-162.8576	230.0967	24538.6622	-162.8575	230,1280	6000.0	0.0001	0.0413	0.0619
BR-A1QG2F3	24726.5244	-162.9246	229.8718	24728.5285	-162.9245	229.9423	0.0041	0.0001	0.0705	0.0803
BR-A1QG2F4	24692.8733	-163,4521	229.9705	24092.8519	-163,4521 -160,6000	230.0048	-0.0214	0.0001	0.0343	0.0489
BR-A10F2F1 BR-A10F2F2	24117,1505	-169.0649	230.1314	24117.1551	-189.0640	230.1342	-0.0204	-0.0001	0.0153	0.0465
BR-A1QF2F3	24303.8190	-169.1499	230.0316	24303.8228	-169.1499	230.0535	0.0037	-0.0001	0.0219	0.0347
BR-A1QF2F4	24261.6187	-169.6832	230.0690	24261.5450	-169.6833	230.0715	-0.0737	-0.0001	0.0025	0.0950
BR-DSCX1F1 BB-DSCX1F2	24037.2055	-170.0575 -170.1376	132,5980	24037.2245	-170.0574	132.0172	0.0190	-0.0001	0.0192	0.04/0
BR-DSCX1F3	24281.8884	-170.1586	82.6259	24281.6664	-170.1588	82.6468	-0.0200	0.0000	0.0209	0.0291
BR-DSCX1F4	24281.6705	-170.1596	-82.5931	24281.7228	-170.1595	-82.5902	0.0522	0.0001	0.0028	0.0615

SA 2013.03.22 (x64)

-

WORKING FRAME: A::BOOSTER

Page 14 / 22

UNITS: Millimeters

Vector Group CYU ANALYSIS-Auto Vectors: Groups: REFERENCE FINAL to FID ONLY												
Name	n.l	Begin		nal	End	70	anl	Del	a			
	R1	10001	21	R2	Ineta2	22	OR CON	o ineta	02	Ma		
BR-AZUF1F1	24110.9028	108,0049	230.0790	24110.9244	109.0001	230.1899	-0.0384	0.0002	0.1109	0.134		
BR-A2GF1F2	24074.0000	108.0024	230.0333	24074.0042	108.0027	230.1078	0.0482	0.0003	0.0740	0.142		
BR-A2QF1F3	24261.4458	169.6833	230.0641	24261.4922	169,6834	230.1274	0.0464	0.0001	0.0633	0.085		
BR-A2QF1F4	24303.5412	169,1498	230.0922	24303.6098	169,1499	230.2009	0.0686	0.0001	0.1087	0.133		
BR-DSCX2F1	24037.3063	170.0578	132.5680	24037.3078	170.0580	132.6101	0.0015	0.0002	0.0421	0.105		
BR-DSCX2F2	24230.6197	170.1372	132,5550	24230.5969	170.1375	132.6126	-0.0228	0.0002	0.0576	0.110		
BR-DSCX2F3	24281.6879	170,1584	82.3900	24281.6235	170.1587	82.4550	-0.0644	0.0003	0.0650	0.152		
BR-DSCX2F4	24281.6432	170.1583	-82.3950	24281.5590	170.1585	-82.3220	-0.0842	0.0001	0.0730	0.125		
BR-A2BD1F1	24170.9511	167.8521	180.0341	24170.9912	167.8521	180.0853	0.0400	0.0001	0.0512	0.069		
BR-A2BD1F2	24468.1410	167.9492	179.9989	24468.1281	167.9492	180.0151	-0.0129	-0.0000	0.0161	0.020		
BR-A2BD1F3	24441.4387	166.5773	179.9820	24441,4411	166.5772	179.9988	0.0024	-0.0001	0.0168	0.051		
BR-A2BD1F4	24651.6618	165.3004	180.0029	24651.6576	165.3003	179.9802	-0.0042	-0.0002	-0.0227	0.080		
BR-A2BD1F5	24358.7477	165,1718	180.0421	24358.7689	185,1718	180.0527	0.0212	-0.0002	0.0108	0.090		
BR-A2CY1F1	24638.2438	164,1616	150,1069	24638.3021	164,1614	150.1250	0.0583	-0.0002	0.0180	0.108		
BR-A2CY1F2	24474.1744	164,1124	150 0720	24474.2588	164,1121	150.0636	0.0822	-0.0003	-0.0084	0.154		
88-42CV1E3	24887 7507	164 1773	08 0470	24687 8058	164 1772	98 0748	0.0551	-0.0001	0.0269	0.079		
BR-A2CV1F4	24887 8392	184 1770	.07 0521	24687 8070	164 1773	-07 0218	0 1678	0.0003	0.0303	0.204		
PR-ADOD1E1	24802 9910	180 7758	220.0852	24802 0028	180 7757	220.0120	0.0007	0.0001	0.0522	0.071		
BR.4200152	24662.0016	161 2007	230.0566	24650 7221	181 2009	220 0802	0.0019	0.0001	0.0673	0.094		
DR ADODIES	24000.7200	161.0007	200.0000	24027 8005	181 2701	220.0050	0.0016	0.0001	0.0073	0.004		
DR-AZUDIF3	24037.0701	101.3780	230.0525	24037,0880	101.3/81	230.0058	0.0234	0.0001	-0.0407	0.078		
BR-A20D1F4	298/8.0/82	100.85/7	230.0004	24878.0834	100.8578	230.0015	0.0152	0.0001	-0.0040	0.075		
BR-AZQG1F1	24035.0105	102,8080	230.0941	240.35.0932	102.8585	230.1047	0.0764	-0.0000	0.0106	0.077		
BR-A2QG1F2	24504.4508	163,3898	230.0588	24504.4974	163.3898	230.0838	0.0468	0.0001	0.0251	0.061		
BR-A2QG1F3	24092.0093	103,4031	230.0316	24692.6108	103.4532	230.0332	0.0515	0.0001	0.0016	0.009		
BR-A2QG1F4	24726.4093	162.9257	230.0266	24726.4833	162.9257	230.0061	0.0739	0.0000	+0.0205	0.077		
BR-A2BD2F1	25062.1284	155.9377	180.0124	25062.1568	155.9378	180.0154	0.0283	0.0001	0.0030	0.050		
BR-A2BD2F2	25359.0839	156.0346	180.0051	25359.1582	156.0348	179.9878	0.0722	0.0002	-0.0375	0.107		
BR-A2BD2F3	25334.9589	154,7109	180.0450	25335.0111	154,7109	180,1169	0.0542	-0.0000	0.0719	0.090		
BR-A2BD2F4	25548.9382	153,4803	180.0251	25546,9809	153,4801	180.0449	0.0428	-0.0002	0.0198	0,109		
BR-A2BD2F5	25252.2453	153,3543	180.0129	25252.2638	153.3542	180.0027	0.0185	-0.0002	-0.0102	0.077		
BR-A2BF1F1	24764.6786	160.0815	166.0177	24764.6358	160.0817	166.0500	-0.0428	0.0002	0.0323	0.115		
BR-A2BE1E2	24942 0180	160,1526	166 0358	24942 0416	160 1527	166 0491	0.0238	0.0002	0.0123	0.078		
BR-A2BE1E3	24960 7441	158 8880	166.0110	24960 7468	158 8880	166.0046	0.0027	0.0000	-0.0064	0.008		
BR-A2BF1F4	25150 8297	157 7052	166 0234	25150 8818	157 7051	166.0328	0.0319	-0.0001	0.0094	0.051		
BR.AOBE1ES	24074 0789	157 8175	166 0380	24074 9045	157 A173	166 1060	-0.0844	-0.0002	0.0680	0 127		
DD ADDDAUEL	AFIES 4807	101.0170	71.0100	24614.0640	150 5303	70.0800	0.0544	0.0002	0.0000	0.121		
OD ADDDAUTO	20103.4097	150.5300	71.0130	20103,9131	156,0303	70.0002	-0.0300	-0.0003	-0.0020	0.100		
DR ADOXATA	20100.0002	100,4073	124 0410	20100.0107	150.0001	104 0581	0.0051	0.0003	0.0151	0.100		
DR-A2CATE1	20327.0404	152.8093	124.0410	20327.0010	102,8091	124.0001	0.0001	-0.0002	0.0151	0.108		
BR-AZUA IFZ	20022.41/8	152.8030	124.0180	20022.3823	152,8030	124.0003	-0.0200	-0.0001	0.0413	0.004		
DR-A2GATES	200/3.9042	152.8//8	74.3400	20073.9380	102.8/11	74.3850	-0.0208	-0.0001	0.0020	0.004		
BR-A2CX1F4	20073.9010	152.8777	-74.2030	20073.9992	152.8770	-74,1408	0.0378	-0.0001	0.1062	0.117		
BR-A2SF1F1	25127.9235	156.8137	158.9430	25127.9328	150,8137	108.9830	0.0092	-0.0001	0.0405	0.049		
BR-A2SF1F2	24993.2898	156,7506	79.2480	24993.3154	156.7505	79.2717	0.0256	-0.0000	0.0237	0.035		
BR-A23F1F5	20203.2313	100.8/08	78.0300	20203.2314	100,8708	79.0742	0.0001	-0.0000	0.0382	0.038		
BR-A2BD3F1	25563.1086	148.0895	179.9780	25563,1441	148.0893	179.9727	0.0354	-0.0002	-0.0059	0.092		
BR-A2BD3F2	25862.2326	148,1407	180.0258	25862.2888	148,1404	180.0331	0.0563	-0.0003	0.0073	0.154		
BR-A2BD3F3	25799.4979	146.8481	179.9381	25799.5049	146.8478	179.9426	0.0070	-0.0003	0.0045	0.135		
BR-A2BD3F4	25975.0653	145.6104	180.0287	25975.0731	145.6102	179.9798	0.0078	-0.0003	-0.0491	0.124		
BR+A2BD3F5	25677.1128	145.5302	180.0153	25677.1164	145.5297	179.9699	0.0038	+0.0005	-0.0454	0.235		
BR-A2BF2F1	25393.7900	151.9488	166.0460	25393.7938	151.9490	166.0038	0.0038	0.0002	-0.0422	0.092		
BR-A2BF2F2	25572.7333	151.9934	166.0240	25572.7577	151,9936	166.0780	0.0244	0.0002	0.0540	0.094		
BR-A2BF2F3	25557.6944	150,7588	166.0370	25557.6708	150.7589	166.1052	-0.0238	0.0001	0.0682	0.089		
BR-A2BF2F4	25715.6746	149.5787	166 2500	25715.6924	149,5790	166.2531	0.0178	0.0003	0.0031	0.144		
BR-A2BF2F5	25537.7860	149,5176	166 0530	25537.7589	149,5176	166.0857	-0.0270	-0.0000	0.0327	0.047		
BR-A2BPM2F1	25657.6885	148,8934	71.0130	25657.7372	148,8914	70.9576	0.0487	-0.0020	-0.0554	0.882		
BR-A2BPM2F2	25885 8148	148,7851	71.0130	25885 5591	149,7631	71.0104	-0.0557	-0.0019	-0.0028	0.880		
BR-A2CY2E1	25918 9061	145 0097	150 0720	25016.0432	145 0096	150 0801	0.0371	-0.0001	0.0081	0.065		
BB-420V2E2	25752 0157	144 0979	149 9770	25752 0000	144 0877	140 0742	-0.0158	-0.0000	-0.0028	0.025		
BR.420V2E3	25066 7565	145 0183	07 0070	250AA 773A	145 0183	08 0207	0.0151	-0.0000	0.0327	0.034		
BR ADOVDEA	25088 7710	146.0183	00 0100	25088 0287	146 0184	07 0728	0.0849	0.0001	0.0284	0.000		
DD ASDDAE1	25020.0808	140.0706	100 1000	25020 0671	140.0704	100 0004	0.0005	0.0001	0.0105	0.024		
BR-A2004F1	20839.0090	140.0780	180.1029	20839.0071	140.0704	100.0534	-0.0025	0.0001	0.0195	0.034		
BR-A2804F2	20139.0700	140.08/2	100.0037	20139.0901	140.06/2	100.0000	0.0201	0.0000	-0.0201	0.030		
BR-A2BD4F3	20038.7014	138.8190	180.0887	20039.7779	138,8169	180.0725	0.0100	-0.0001	-0.0162	0.062		
BR-A28D4F4	201/9.4814	137.0098	180.0238	201/9.0001	137.0028	180.0560	8800.0	-0.0001	0.0322	0.081		
BR-A2BD4F5	25879,9441	137.5319	179.9740	25879.9547	137.5317	180.0098	0.0106	-0.0003	0.0358	0.123		
BR-A2BF3F1	26776.9312	144.1311	166.0332	25776.9107	144.1313	165.9951	-0.0205	0.0002	-0.0361	0.082		
BR-A2BF3F2	25956.6876	144.1487	166.0235	25956.7097	144.1489	165.9914	0.0220	0.0001	-0.0321	0.084		
BR-A2BF3F3	25905.1148	142.9366	166.0499	25905.1061	142.9367	166.0138	-0.0088	0.0001	-0.0361	0.051		
	28027 2870	141,7509	166.0667	26027.2252	141.7509	165.9932	-0.0327	0.0000	-0.0735	0.080		
BR-A2BF3F4	EAAPT FALLE							the second se				
BR-A2BF3F4 BR-A2BF3F5	25847.9678	141.7168	166.0591	25847.9914	141.7167	166.0172	0.0236	-0.0001	-0.0419	0.053		
BR-A2BF3F4 BR-A2BF3F5 BR-A2BPM3F1	25847.9678 25964.0481	141.7168 140.6290	166.0591 71.0130	25847.9914 25964.0816	141.7167 140.6268	166.0172 70.9454	0.0236	-0.0001	-0.0419 -0.0678	0.053		

SA 2013.03.22 (x64)

-

WORKING FRAME: A::BOOSTER UNITS: Millimeters Page 15 / 22

		CYU AN	ALYSIS Auto	Ve Vectors: G	ector Group Groups: REFERENCE FINAL to FID ONLY						
	Name	p:I	Begin	71	pol.	End Theta 2	72	- Pl	Delt	3	Man
	BR-A2SD1F1	25954.3259	140.9071	158.9940	25954.3566	140.9071	158.9501	0.0307	-0.0000	-0.0439	0.0585
	BR-A2SD1F2	25817.2415	140.8862	79.5170	25817.2984	140,8861	79.5212	0.0569	-0.0001	0.0042	0.0859
	BR-A2SD1F5 BR-A2BF4F2	26092.0313	138,1928	166.0100	26091.9722	136,1929	188.0743	0.0140	0.0001	0.0843	0.0850
	BR-A2BF4F3	26032.2281	134.9973	166.0250	26032.2078	134.9973	166.0667	-0.0204	-0.0000	0.0417	0.0505
	BR-A2BF4F4	26119.2359	133.8018	166.0300	26119.2131	133.8016	166.0589	-0.0228	-0.0001	0.0289	0.0656
	BR-A2BD5F1	25880.2236	132,4626	180.0308	25880,1990	132,4627	180.0362	-0.0248	0.0001	0.0054	0.0510
	BR-A2BD5F2	26179.8410	132.4250	179.9842	26179.8256	132.4251	179.9882	-0.0154	0.0001	0.0040	0.0368
	BR-A2BD5F3	26040.2053	131.1759	180.0378	26040.1989	131.1759	180.0524	-0.0064	0.0000	0.0146	0.0194
	BR-A2BD5F5	25839.9025	129.9160	179,9939	25839.8949	129.9159	180.0184	-0.0078	-0.0001	0.0245	0.0399
	BR-A2BF5F1	25848.3302	128.2762	166.0220	25848.3129	128.2763	166.0176	-0.0173	0.0000	-0.0044	0.0213
	BR-A2BF5F2 BR-A2BF5F2	26027.7310	128.2421	166.0220	26027.7351	128,2422	166.0200	0.0041	0.0001	-0.0020	0.0275
	BR-A2BF5F4	25957.3935	125.8443	166.0230	25957.3883	125.8442	166.0139	+0.0052	-0.0002	-0.0091	0.0710
	BR-A2BF5F5	25777.5247	125.8618	166.0170	25777.4877	125,8617	166.0137	-0.0370	-0.0001	-0.0033	0.0734
	BR-A2BPM4F1 BR-A2BPM4F2	25968.8434 25964 3403	129,4921 129,3845	71.0130	25968.8339	129,4943	71.1108	-0.0095	0.0022	0.0978	0.9982
	BR-A2SD2F1	25954.8314	129.0840	158.9200	25954.7733	129.0838	158.9284	-0.0581	-0.0002	0.0084	0.0912
	BR-A2SD2F2	25817.4458	129.1044	79.3990	25817.4048	129.1042	79.3820	-0.0410	-0.0002	-0.0170	0.1037
	BR-A28D2F0 BR-A28D6F1	25877 7348	129.0019	180 0280	25877 7025	124.0020	180.0143	-0.0287	0.0001	-0.0117	0.0408
	BR-A2BD6F2	25975.6485	124.3822	180.0140	25975.6428	124.3822	180.0241	-0.0057	0.0001	0.0101	0.0304
	BR-A2BD6F3	25800.2816	123.1442	180.0340	25800.2608	123.1442	180.0691	-0.0208	-0.0000	0.0351	0.0409
	BR-A2BD0F4	25564.3422	121,8019	179,9890	25564.3140	121,0010	180.0002	-0.0283	-0.0002	0.0323	0.0863
	BR-A2BF6F1	25538.4387	120.4758	166.0360	25538,4599	120,4780	185.9851	0.0211	0.0002	-0.0709	0.1037
	BR-A2BF0F2	25716.3483	120,4147	166.0320	25716.3387	120,4149	105.9989	-0.0090	0.0001	-0.0331	0.0740
	BR-A2BF0F3 BR-A2BF0F4	25573.5799	118.0004	166.0140	25573.6316	118.0002	166.0338	0.0517	-0.0002	0.0198	0.0913
	BR-A2BF6F5	25394.7194	118.0449	166.0520	25394.7329	118.0449	168.0315	0.0135	-0.0001	-0.0205	0.0333
	BR-A2BPM5F1 BR-A2BPM5F2	25666.3232	121.2285	71.0130	25666.2910	121.2285	71.1567	-0.0323	0.0001	0.1437	0.1499
	BR-A2CY3F1	25917.2324	124.9838	150.1020	25917.2117	124.9838	150.1660	-0.0207	-0.0000	0.0640	0.0678
	BR-A2CY3F2	25752 5582	125.0054	150.1700	25752.5164	125.0058	150.1410	-0.0418	0.0003	-0.0290	0.1519
	BR-A2CY3F3 BR-A2CY3F4	25967.2939	124.9773	97.8550	25967.2558	124.9772	97.9445	0.0381	-0.0002	0.0895	0.3368
	BR-A2BD7F1	25252.9834	116.6413	180.0299	25252.9617	116.6414	179.9842	-0.0217	0.0001	-0.0457	0.0588
	BR-A2BD7F2	25547.9104	116.5154	180.0048	25547.8879	116.5155	180.0075	-0.0224	0.0001	0.0027	0.0362
	BR-A2BD7F3 BR-A2BD7F4	25360.4887	113,9611	180.0488	25360 4295	113,9812	180.0494	-0.0410	0.0000	0.0006	0.0410
	BR-A2BD7F5	25063.3537	114.0577	180.0018	25063.2571	114.0577	179.9805	-0.0966	0.0000	-0.0413	0.1055
	BR-A2BF7F1	24976.2013	112.3764	166.0830	24976.1435	112.3764	100.0083	-0.0577	0.0000	-0.0747	0.0949
	BR-A2BF7F3	24962.0411	111.1057	166,1200	24962.0119	111,1057	166.1046	-0.0292	-0.0001	-0.0154	0.0522
	BR-A2BF7F4	24943.0602	109.8414	166.0420	24943.0337	109.8412	166.0175	-0.0265	-0.0001	-0.0245	0.0727
	BR-A2BF7F5 BR-A2BPMAE1	24765.7180	109.9123	166.0300	24765.6783	109.9121	166.0202	-0.0397	-0.0002	-0.0098	0.0927
	BR-A2BPM6F2	25154.5627	113.4571	71.0130	25154.5582	113.4584	71.6511	-0.0045	0.0013	0.6381	0.8417
	BR-A2CX2F1	25328.9027	117.1856	124.0880	25328.9667	117.1856	124.0530	0.0640	-0.0000	-0.0350	0.0729
	BR-A2CX2F2 BR-A2CX2F2	25574 8452	117,1304	74 5370	25523.3556	117.1306	74 4682	0.1005	0.0001	-0.0212	0.1179
	BR-A2CX2F4	25574.9883	117.1151	-74.0490	25575.0318	117.1153	-74.1983	0.0435	0.0002	-0.1493	0.1910
	BR-A2SF2F1	25129.0527	113.1760	158.9250	25129.0687	113,1759	158.9001	0.0161	-0.0001	-0.0249	0.0486
	BR-A2SF2F2 BR-A2SF2F5	24994,1871 25284 0132	113.2396	79.4220	24994.2542	113,2396	79,3961 79,5128	0.0671	-0.0000	-0.0259	0.0749
	BR-A2BD8F1	24358.0987	104.8241	180.0253	24358.0971	104.8241	180.0461	0.0004	-0.0000	0.0208	0.0227
	BR-A2BD8F1	24358.0967	104.8241	180.0253	24358.1609	104.8238	180.0634	0.0642	-0.0003	0.0381	0.1366
	BR-A2BD8F2 BR-A2BD8F2	24003.1395	104.0957	179.9986	24653,2198	104.0955	180.0024	0.0204	-0.0002	0.0745	0.1304
	BR-A2BD8F3	24443.1777	103.4186	179.9999	24443,2667	103,4184	180.0267	0.0890	-0.0002	0.0268	0,1326
	BR-A2BD8F4	24470.0350	102.0469	180.0447	24470.0110	102.0468	180.0579	-0.0240	-0.0000	0.0132	0.0284
	BR-A2BD8F5	24172.7392	102.1438	180.0095	24172.7710	102.1437	180.0158	0.0318	-0.0001	0.0063	0.0480
	BR-A2BD8F5	24172.7392	102.1438	180.0095	24172.8753	102.1436	179.9977	0.1361	-0.0002	-0.0118	0.1677
	BR-A2BPM7F1	24532.6648	105.3959	71.0130	24532.5087	105.3915	73.1493	-0.1561	-0.0044	2.1363	2.8553
	BR-A2CX3F1	24590.9146	107.9198	124.0740	24590.9590	107.9196	124.0972	0.0444	-0.0002	0.0232	0.1131
	BR-A2CX3F2	24784.2507	107.8442	124.0400	24784.2941	107.8442	124.0881	0.0435	-0.0001	0.0481	0.0697
	BR-A2CX3F3 BR-A2CX3F4	24835,4995 24835,3850	107.8234	-74.0660	24835.5295	107.8235	74.1589	0.0300	0.0001	0.0929	0.1153
- 1											

SA 2013.03.22 (x64)

WORKING FRAME: A::BOOSTER UNITS: Millimeters Page 16 / 22

Part 2:	Deviations	of All	Elements
---------	------------	--------	----------

	CYLLAN	ALVSIS-AU	Vectors C	ctor Group			/	-		
Name	GIUM	Begin	Visitions. C	Coups NET End	End	IOT ID ONL		Delt	3	
	R1	Theta1	Z1	R2	Theta2	Z2	dR	dTheta	dZ	Mag
BR-A2CY4F1	24639.6473	105.8316	150.1850	24639.6617	105.8316	150.2078	0.0144	0.0000	0.0228	0.0271
BR-A2CY4F2	24475.7988	105.8815	150.0560	24475.8071	105.8818	150.0146	0.0086	0.0003	-0.0414	0.1427
BR-A2CY4F3	24689.1538	105.8166	98.0540	24689.1977	105.8168	98.1501	0.0439	0.0001	0.0961	0.1200
BR-A2CT4F4	24659,1032	105,8102	-97.8920	24059.4242	100.8100	-97.7889	0.2711	0.0003	0.1031	0.3165
BR-A2002F1	24002.0300	108.0940	230.1133	24002.0720	108.0240	230.1440	0.03/0	0.0000	0.0307	0.0504
BR-A20D2F2	24881 0212	109.2190	230.0013	24084.3038	100.2100	230.0002	0.0345	-0.0000	0.0114	0.0006
BR-A20D2F4	24839.0269	108.6153	230 0489	24839.0735	108.6153	230.0626	0.0466	0.0000	0.0137	0.0485
BR-A2QG2F1	24505.8558	106.6046	229.9976	24505.9328	108.6045	229.9767	0.0770	-0.0001	-0.0209	0.0946
BR-A2QG2F2	24539.7031	107,1382	229.9753	24539.7911	107.1360	229.9308	0.0880.0	-0.0001	-0.0445	0.1128
BR-A2QG2F3	24727.5811	107.0894	230.0223	24727.6395	107.0692	229.9964	0.0584	-0.0001	-0.0259	0.0887
BR-A2QG2F4	24693.9370	106.5415	230.0248	24694.0056	106.5416	230.0232	0.0685	0.0001	-0.0016	0.0825
BR-A2QF2F1	24076.4295	100.3982	229.9512	24076.4408	100.3957	230.0388	0.0113	-0.0005	0.0876	0.2130
BR-A2QF2F2	24119.0059	100.9337	229.9940	24119.0091	100,9332	230.0297	0.0032	-0.0005	0.0457	0.1958
BR-A20F2F3	24300.0119	100.8480	230.1070	24300.0420	100.8482	230.1102	0.0307	-0.0004	0.0082	0.1097
BR.YSBI MIEL	24203.4001	00.5152	05 1024	24029 0017	00.5459	05 2359	0.0000	-0.00003	0.1334	0.1070
BR-XSBUM1E2	24188 8401	00 4837	05 1732	24188 8358	00 4934	05 3188	-0.0043	-0.0003	0 1454	0 1024
BR-XSBUM1F3	24014,4016	99.3338	94,9768	24014.3430	99,3337	95.1411	-0.0586	-0.0001	0.1643	0.1780
BR-XSBUM1F4	24172.2291	99.2725	95.0665	24172.1817	99.2723	95.1736	-0.0475	-0.0002	0.1071	0.1555
BR-XSBUM2F1	23773.7499	94.2946	94.9439	23774.0020	94.2948	94,9176	0.2521	0.0001	-0.0263	0.2590
BR-XSBUM2F2	23932.9617	94.2659	94.9293	23933.2452	94.2660	94.9030	0.2835	0.0001	-0.0262	0.2903
BR-XSBUM2F3	23767.3762	94.0789	94,9406	23767.5739	94.0791	94.8510	0.1978	0.0002	-0.0897	0.233
BR-XSBUM2F4	23926.5984	94.0507	94.9206	23926.8030	94.0510	94.8549	0.2046	0.0003	-0.0657	0.2500
BR-XSCXW1F1	24039.0860	99.9405	132.5490	24039.0750	99.9408	132.0594	-0.0110	0.0003	0.1104	0.100
BR-ASCAW1F2	24232.2301	99,8008	92 4720	24232.2228	99,8000	132.0050	-0.0123	-0.0002	0.0810	0.110.
BR.YSCYW1F4	24283 8040	00 8408	.92 3930	24283 8878	00 8403	-92 3779	-0.0372	-0.0003	0.0072	0.109
BR-XSKIKF1	23938.5547	98,8841	-86 0000	23938 7238	98,8846	-85,7226	0.1690	0.0004	0.2774	0.366
BR-XSKIKF2	24185,5882	98,7927	-86.0000	24185.6382	98,7931	-85,7287	0.0500	0.0004	0.2713	0.330
BR-XSKIKF3	24016.3107	95.6082	-86.0000	24016.4674	95,6083	-86.0042	0.1567	0.0001	-0.0042	0.1674
BR-XSKIKF4	23767.5199	95.6671	-86.0000	23767.8339	95.6673	-85.9301	0.3140	0.0002	0.0699	0.331
BR-XSPKU1F2	23871.7043	94.8807	71.0130	23872.5461	94,8603	71.4885	0.8418	-0.0004	0.4755	0.978
BR-XSSMP1F1	23789.8099	91.9271	138.3700	23789.7781	91.9268	138.3963	-0.0319	-0.0003	0.0263	0.144
BR-XSSMP1F2	23899.7480	91,9182	138.3900	23899.8587	91.9185	138.3795	0.1107	0.0002	-0.0105	0.149
BR-XSSMP1F3	23888.3022	90.7316	138.3700	23888.2723	90,7317	138.3643	-0.0299	0.0001	-0.0057	0.053
DD. YCDI MAED	20018 0070	05.0400	04.0800	23018 1400	05.0404	05 0220	0.1220	0.0000	0.0310	0.0000
BR-XSBLIM3F3	23762 9892	85 7050	94 9500	23763 0151	85 7039	94 8388	0.0259	-0.0011	-0 1112	0.477
BB-XSBUM3E4	23922 6981	85 7332	84 8500	23922 6157	85 7333	94 9065	-0.0824	0.0001	-0.0435	0.099
BR-XSPKU2F1	23862 2882	85,1380	71.0130	23862 3558	85,1346	70,9814	0.0875	-0.0014	-0.0318	0.579
BR-XSPKU2F2	23867.2761	84.9973	71.0130	23867.2199	84.9957	71.0558	-0.0582	-0.0016	0.0428	0.664
BR-A3QF1F1	24119.2977	79.0664	229.9840	24119.4341	79.0883	229.9338	0.1384	-0.0001	-0.0302	0.149
BR-A3QF1F2	24076,7134	79.6036	230.0480	24076.8087	79.0038	230.0332	0.0953	0.0002	-0.0148	0.1350
BR-A3QF1F3	24263.7136	79.6848	230.0800	24263.6294	79.6847	230.1460	-0.0842	-0.0001	0.0660	0.120
BR-A3QF1F4	24305.9471	79.1513	230.0100	24305.9166	79.1513	230.0550	-0.0305	0.0000	0.0450	0.056
BR-ASBUM4F1	24014.2000	80.0004	94.9089	24014.2003	80,0003	94.8044	0.0007	-0.0000	-0.0040	0.000
BR-ASBUM4F2 BD-YCBI IM4E2	241/2.108/	80.7272	95,0052	24029 7140	90,4526	94,8027	-0.0093	-0.0001	0.0901	0.093
BR-XSBUM4F4	24186.8725	80,5166	95 0237	24186,7798	80.5168	95.0431	-0.0929	0.0001	0.0194	0.114
BR-XSCXW2F1	24038.9883	80.0598	132,5380	24038.9325	80.0597	132,5371	-0.0558	-0.0001	0.0011	0.083
BR-XSCXW2F2	24232.3578	80.1401	132.5500	24232.2988	80.1405	132.5468	-0.0592	0.0004	-0.0032	0.181
BR-XSCXW2F3	24283.6971	80,1599	82.4180	24283.5523	80,1605	82.4498	-0.1448	6000.0	0.0318	0.3084
BR-XSCXW2F4	24283.6395	80,1599	-82.5530	24283.5725	80,1601	-82.5911	-0.0670	0.0001	-0.0381	0.099
BR-A3BD1F1	24172.3567	77.8575	179.9916	24172.4698	77.8575	180.0452	0.1131	-0.0000	0.0536	0.125
BR-A3BD1F2	24469.6347	77.9548	179.9957	24469.7716	77.9548	180.0246	0.1369	0.0000	0.0289	0.1400
BR-A3BD1F3	24443.0098	76.5833	1/9.9//0	24443.1009	76,0831	179.9554	0.1010	-0.0002	-0.0222	0.1/4
BR-A3801F4	24053.1012	75.3003	170 0920	24053.2905	75,3001	179.9400	0.1303	-0.0002	-0.0892	0.180
BR.A3BPMIE1	24525 6590	74 7396	71 0130	24526 0123	74 7370	71 4091	0 3533	-0.0015	0.3051	0.834
BR-A3BPM1F2	24532 6648	74.6041	71.0130	24533.0581	74.6025	71.3918	0.3934	-0.0015	0.3788	0.851
BR-A3CX1F1	24784.1578	72.1575	124.0000	24784.0831	72.1578	123.9991	-0.0745	0.0003	-0.0009	0.160
BR-A3CX1F2	24590.7414	72.0825	124.0000	24590.6853	72.0827	123.9404	-0.0561	0.0002	-0.0598	0.130
BR-A3CX1F3	24835.2887	72,1771	74.2130	24835.2996	72.1773	74.1485	0.0109	0.0002	-0.0645	0.113
BR-A3CX1F4	24835.1574	72.1760	-74.3130	24835.4229	72.1768	-74.3128	0.2655	8000.0	0.0004	0.439
BR-A3CY1F1	24639.5580	74.1684	150.0000	24639.5484	74.1682	149.9510	-0.0096	-0.0002	-0.0490	0.115
BR-A3CY1F2	24475.9315	74.1204	150.1195	24476.0263	74,1203	150.0871	0.0948	-0.0001	-0.0324	0.105
BR-A3CY1F3	24689.0913	74.1835	97.7708	24689.1714	74.1827	97.7069	0.0801	-0.0009	-0.0639	0.384
EP.ASODIE:	24008.0813	70 7844	230,1201	24068,1028	70.7847	230 1071	0.0070	0.0003	-0.0041	0.063
BR-A3OD1E2	24852 0008	71.3047	230 0585	24852 0520	71.3049	230 0454	0.0522	0.0001	-0.0121	0.077
	-TUUE.00000	1 1.0001			11.0000	200.0404	0.0000	0.0001	-0.0101	w.w///

WORKING FRAME: A::BOOSTER UNITS: Millimeters Page 17 / 22

Name End End Detail 2 R0 Thesis 22 R0 Thesis R0		Vector Group CYU ANALYSIS -Auto Vectors: Groups: REFERENCE FINAL to FID ONLY												
BR-A4001FF 24800 512 70.839 220 721 74805 220 70.839 220 516 0.0051 0.0052	Name	P 1	Begin	71	pol	End Thata2	72	- Pl	Delt	3	1/22			
BR-A3001F1 2458-730 72.8031 230.012 0.0021 0.00112 0.00112 0.0021 <	BR-A3QD1F4	24880.9182	70.8639	229.9722	24880.9285	70.8839	229.9165	0.0083	-0.0000	-0.0557	0.0577			
BR-A3C0FF 2400.8121 73.846 2200.420 440.2400.8131 73.847 726 22008 20001 40.000 40180 0135 BR-A3C0FF 2008.1547 65.401 150.013 2007.014 65.441 170.0857 40.027 40.000 40.226 0.085 BR-A3C0FF 2008.1547 65.401 150.013 2007.014 47164 170.0857 40.027 40.000 40.020 00.855 BR-A3C0FF 2008.1547 65.401 150.013 2007.014 47164 170.0857 40.025 40.001 40.000 40.000 40.012 00.855 BR-A3EFFF 2008.1547 65.001 150.013 2007.014 47164 170.0850 100.000 40.012 00.000 40.011 00.000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 4	BR-A3QG1F1	24539.7390	72.8633	230.0811	24539.8240	72.8631	230.0192	0.0850	-0.0002	-0.0619	0.1284			
BR.A3602FF 2.927.2003 7.2003 2.2003 <th2.2003< th=""> <th2< th=""><th>BR-A3QG1F2 BR-A3QG1F3</th><th>24505.8121</th><th>73,3948</th><th>230.0496</th><th>24505.8131</th><th>73.3947</th><th>229.9388</th><th>0.0010</th><th>-0.0001</th><th>-0.1108</th><th>0.1174</th></th2<></th2.2003<>	BR-A3QG1F2 BR-A3QG1F3	24505.8121	73,3948	230.0496	24505.8131	73.3947	229.9388	0.0010	-0.0001	-0.1108	0.1174			
BR-A3BC/FI 2008.1074 66.4431 170.087 0.001 0.0028 0.0051 0.0028 <th< th=""><th>BR-A3QG1F4</th><th>24727.6204</th><th>72.9303</th><th>230.0075</th><th>24727.7055</th><th>72,9303</th><th>229.8988</th><th>0.0851</th><th>-0.0000</th><th>-0.1089</th><th>0.1385</th></th<>	BR-A3QG1F4	24727.6204	72.9303	230.0075	24727.7055	72,9303	229.8988	0.0851	-0.0000	-0.1089	0.1385			
BHA-850212 2500_0016 00.0016 2300_0017 2300_0017 10.0014 0.0001	BR-A3BD2F1	25063.1547	65.9433	180.0113	25063.0915	65.9431	179.9857	-0.0632	-0.0001	-0.0256	0.0851			
BR.ABB02F4 2584.7442 53.4650 170.0501 253.470 170.0601 253.007 0.0444 0.0001 0.0002 0.0112 0.1184 BR.ABBF1F1 24765.0557 70.0680 160.0162 24765.427 70.1680 160.0083 0.0114 0.1000 0.0112 0.1185 BR.ABBF1F1 24462.0497 10.1600 160.0182 24461.0212 0.61461 10.0002 0.0114 0.1000 0.0112 0.1185 BR.ABBF1F1 24462.0494 65.9471 10.0126 0.5444.0194 0.0212 0.0001 0.0114 0.1012 0.0002 0.0114 0.1012 0.0004 0.0114 0.1012 0.0064 0.0114 0.1012 0.0064 0.0022 0.0011 0.0118 0.0011 0.0118 0.0011 0.0118 0.0114 0.0101 0.0118 0.0011 0.0118 0.0114 0.0101 0.0118 0.0114 0.0101 0.0118 0.0011 0.0118 0.0011 0.0118 0.0112 0.0181 0.0011 0.0118 0.0011 0.0118 0.0011 0.0118 0.0011 0.0118 0.00011 0.	BR-A3802F2 BR-A3802F3	253300.2094	66.0401	170 0810	25300.2019	66.0400	179.9408	-0.0070	-0.0000	-0.0000	0.0704			
BR.A38027F8 2223.0301 63.3677 170.0661 60.071 70.0681 60.071 70.0681 60.071 70.0681 60.071 70.0681 60.071 70.0681 60.071 70.0681 60.071 70.0681 60.071 70.0681 60.071 70.0681 60.071 70.0681 60.071 70.0681 60.071 70.0681 60.071 70.0681 60.071 70.0681 60.071 70.0681 60.071 70.072 70.0681 60.071 70.072 70.0681 60.071 70.072 70.0681 60.071 70.072 70.0672 70.072 7	BR-A3BD2F4	25547.9490	63.4859	179.9931	25547.9686	83.4858	179.9590	0.0198	-0.0001	-0.0341	0.0584			
BR-A38F17 24463 (307) 10 USE 0 0000 1 24463 (307) 10 USE 0 0000 1 00110 01100 0100 1 01100 0100 1 01100 0100 1 01100 0100 1 01100 0100 1 0110 1 0100 1 00000 1 0000 1 0000 1	BR-A3BD2F5	25253.0301	63.3597	179.9943	25253.0745	63.3596	179.9975	0.0444	-0.0001	0.0032	0.0757			
BR-A3BFIFE 2442.0400 68.4965 1640.0324 1640.0324 1640.0349 0.0044 0.00000 0.0000 0.0000	BR-A3BF1F1 BR-A3BF1F2	24943.3877	70.0880	166.0061	24943,2894	70.0880	100.0003	-0.0982	0.0000	0.0112	0.1037			
BR-A38FTF4 25152.012 67.7116 106.0269 0.0041 0.0000 0.0001 0.00000 0.0000 0.0000	BR-A3BF1F3	24962.0409	68.8945	166.0352	24961.9323	68.8945	166.0204	-0.1087	0.0000	-0.0148	0.1101			
BR.A38PH/FF 2514 0.021 0.0424 0.01247 0.00424 0.00424 0.0044	BR-A3BF1F4	25152.1154	67.7118	166.0258	25152.0212	67.7118	166.0349	-0.0941	0.0000	0.0091	0.0948			
BR.ABEPUZ: 2516.4.480 66.4130 71.0130 2816.4001 68.4107 71.017 6.0284 0.0078 6.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 0.0077 0.0280 BR.ASCXIF2 2663.1761 62.8970 124.0000 25523.1203 62.8777 0.0284 74.0716 0.0284 40.001 -0.078 0.0001 0.0184 0.001 0.0184 0.001 0.0184 0.001 0.0184 0.001 0.0224 0.001 0.0184 0.001 0.0142 0.0024	BR-A3BPM2F1	25154 5627	66,5429	71 0130	25154 6096	66.5407	71.0646	0.0469	-0.0022	0.0215	0.0584			
BR.A3CX2F1 2838.88c2 66.2164 124.0002 623.25 8300 223.25 20.002 -0.017 0.0002 -0.017 0.0002 0.0002 -0.017 0.0002 0.0002 0.0001 0.018 0.0001 0.018 0.0001 0.018 0.0001 0.018 0.0001 0.018 0.0001 0.018 0.0001 0.018 0.0001 0.018 0.0001 0.0121 0.0001 0.0121 0.0001 0.0121 0.0001 0.0121 0.0001 0.0121 0.0001 0.0121 0.0001 0.0121 0.0001 0.0121 0.0001 0.0121 0.0001 0.0121 0.0001 0.0121 0.0131 0.0122 0.0001 0.0121 0.0131 0.0151 0.0131 0.0151 0.0131 0.0151 0.0131 0.0151 0.0131 0.0151 0.0131 0.0131 0.0157 0.0141 0.0011 0.0143 0.0011 0.0143 0.0011 0.0143 0.0011 0.0143 0.0011 0.0141 0.0011 0.0161 0.0161<	BR-A3BPM2F2	25100.4859	66.4136	71.0130	25166.4001	66.4117	71.0172	-0.0859	-0.0019	0.0042	0.8520			
BR.A.BCX:2F2 255.4 17.4 155.0 255.7 17.7 22.88.2 17.6 0.00.8 0.001 0.1126 0.001 0.1126 0.001 0.0125 0.001 0.0125 0.001 0.0125 0.001 0.0255 0.001 0.0255 0.001 0.0255 0.001 0.0255 0.001 0.0255 0.001 0.0255 0.001 0.0255 0.001 0.0255 0.001 0.0255 0.001 0.0255 0.001 0.0255 0.001 0.0175 0.0055 0.0175 0.0056 0.001 0.0175 0.0056 0.001 0.0175 0.0026 0.0017 0.0175 0.0017 0.0175 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0016 0.0022 0.0018 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.00	BR-A3CX2F1 BR-A3CX2F2	25328.5862	62,8164	124.0050	25328.5306	62.8162	123.9872	-0.0556	-0.0002	-0.0178	0.0905			
BR-A3CX2F 23274.8186 C2.8846 -74.150 255747000 C2.8846 -74.4146 -0.1185 0.0001 0.0032 0.0001 0.0032 0.0001 0.0032 0.0001 0.0032 0.0001 0.0032 0.0001 0.0032 0.0001 0.0032 0.0001 0.0032 0.0001 0.0032 0.0001 0.0232 0.0032 0.0031 0.0232 0.0032	BR-A3CX2F3	25574.7925	62.8843	74,1850	25674.7577	62.8842	74.0716	-0.0348	-0.0001	-0.1134	0.1312			
BR-A3SF1F1 25120035 68.227 159.4300 2512.6483 66.227 160.0205 -0.0325 0.0007 0.0022 0.0032 BR-A3SF1F2 22664.0583 66.8865 79.6400 2264.0783 66.8867 79.8215 0.0097 0.0000 0.0197 0.0000 0.0197 0.0000 0.0197 0.0000 0.0197 0.0000 0.0197 0.0000 0.0197 0.0000 0.0197 0.0000 0.0197 0.0000 0.0197 0.0000 0.0197 0.0000 0.0197 0.0000 0.0197 0.0000 0.0197 0.0000 0.0022 0.0103 0.1017 0.0117 0.0103 0.0117 0.0103 0.0117 0.0103 0.0117 0.0103 0.0117 0.0103 0.0112 0.0112 0.0112 0.0112 0.0112 0.0103 0.0112 0.0103 0.0112 0.0103 0.0112 0.0103 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112<	BR-A3CX2F4	25574.8186	62.8846	-74.1510	25574.7000	62.8846	-74.1456	-0.1185	0.0001	0.0054	0.1210			
BR.A.387 E.g. Control 16 (Control Carry A.078 60.0103 70.8710 0.0015 0.0024 0.0025 0.0026 BR.A.38203F1 2550.8052 56.0473 180.0270 2550.8850 76.0774 10.0174 0.0285 0.0000 0.0478 0.0285 0.0000 0.0478 0.0285 0.0000 0.0478 0.0285 0.0000 0.0478 0.0285 0.0000 0.0478 0.0171 0.0285 0.0001 0.0444 0.0285 0.0001 0.0444 0.0285 0.0001 0.0444 0.0285 0.0001 0.0476 0.0775 0.0285 0.0001 0.0171 0.0171 0.0171 0.0171 0.0171 0.0016 0.0025 0.0001 0.0016 0.0025 0.0001 0.0016 0.0025 0.0001 0.0161 0.0057 0.0285 0.0000 0.0171 0.0475 0.0484 0.0000 0.0171 0.0475 0.0285 0.0000 0.0171 0.0475 0.0484 0.0400 0.0016 0.0464 0.0471 0.0484 <	BR-A3SF1F1	25129.0035	66.8227	159.0300	25128.9683	66.8227	159.0626	-0.0352	0.0001	0.0326	0.0635			
BR-A3BDF1 2563.8021 58.0973 190.0029 2683.8025 56.144 170.444 0.0888 0.0000 0.00478 0.0000 0.00478 0.0000 0.0001	BR-A3SF1F5	25264.0583	66,8865	79.5590	25264.0738	66,8865	79.5727	0.0155	0.0000	0.0137	0.0262			
BR-A3BDF2 28802 6287 58, 1464 150.0117 28802 076 56, 4864 150, 4001 0.00483 0.1102 BR-A3BDF4 28075, 725 56, 5186 160, 0107 26077, 8726 55, 8186 119, 4075 0.0086 0.0002 0.0118 0.1018 BR-A3BDF4 28075, 7255 56, 5186 160, 0107 26077, 8736 55, 8186 119, 4075 0.0006 0.0002 0.0116 0.0008 0.0002 0.0116 0.0011 0.0107 0.4077 0.0286 0.0000 0.0011	BR-A3BD3F1	25563.8052	58.0973	180.0269	25563.8880	58.0974	180.0747	0.0828	0.0000	0.0478	0.0958			
BR-ASBDEF 20000-2003 500-000 100-001 200000 <t< th=""><th>BR-A3BD3F2</th><th>25862.9287</th><th>58.1484</th><th>180.0117</th><th>25863.0175</th><th>58,1484</th><th>179.9434</th><th>8880.0</th><th>-0.0000</th><th>-0.0683</th><th>0.1120</th></t<>	BR-A3BD3F2	25862.9287	58.1484	180.0117	25863.0175	58,1484	179.9434	8880.0	-0.0000	-0.0683	0.1120			
BR-A3BDFF 28677 8:227 86.5862 196.0070 0.00000 0.0000 0.0000	BR-A3BD3F4	25975,7253	55,6185	180.0010	25975,7882	55,6183	179,9975	0.0707	-0.0002	-0.0138	0.1108			
BR-A36F2F1 2334-7362 61.8546 166.0900 2344-6827 106.057 0.0228 0.0001 0.0177 0.0477 BR-A36F2F2 2553.671 61.8640 166.0200 2558.521 60.7650 166.273 0.0446 0.0001 0.0161 0.001 0.0161 0.0011 0.0467 0.0011 0.0467 0.0011 0.0467 0.0011 0.0467 0.0011 0.0467 0.0011 0.0467 0.0011 0.0467 0.0011 0.0472 0.0023 0.0226 0.0012 0.0213 0.0226 0.0023 0.0226 0.0023 0.0226 0.0023 0.0226 0.0023 0.0226 0.0023 0.0226 0.0023 0.0226 0.0023 0.0226 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0012 0.117 0.417 4.965 160.0410 1.0014 0.0003 0.0013 0.0013 0.0013 0.0013 0.0012 0.1107 0.1125 BR-A3072F2<	BR-A3BD3F5	25677.8227	55.5382	180.0266	25677.8735	55,5380	180.0070	0.0508	-0.0002	-0.0198	0.0968			
BH-A35F1F2 2053 0107 01.4867 106.0039 0.01260 0.0017 0.0161 0.0007 0.0017 0.0101 0.0101 0.0101 0.0101 0.0017 0.0017 0.0017 0.0001	BR-A3BF2F1	25394.7382	61.9548	166.0390	25394.6957	61.9548	166.0567	-0.0425	-0.0000	0.0177	0.0477			
BR-A35F2F4 25716 5038 65 6552 166 0050 05716 5486 05 6552 166 0050 0.0001	BR-A3BF2F2 BR-A3BF2F3	25558.4798	60,7650	166.0200	25558 5261	80,7651	165,9733	-0.0285	0.0001	-0.0657	0.0611			
BR-A3BFAFE 25638.6729 69.6239 160.0300 25638.6733 59.6239 10.6233 0.0404 0.0002 0.0107 0.0433 BR-A3BFMSF1 25664.0415 55.8067 71.0310 0.0622 0.0232 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0233 0.0033 0.0003 0.0033 0.0003 0.0033 0.0003 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0012 0.111 0.0012 0.0102 0.0012 0.01011 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 </th <th>BR-A3BF2F4</th> <th>25718.5038</th> <th>59.5852</th> <th>166.0280</th> <th>25718.5488</th> <th>59.5852</th> <th>185.9833</th> <th>0.0430</th> <th>-0.0001</th> <th>-0.0647</th> <th>0.0826</th>	BR-A3BF2F4	25718.5038	59.5852	166.0280	25718.5488	59.5852	185.9833	0.0430	-0.0001	-0.0647	0.0826			
Brtwasbriks Zobes 40.24 Solsweig 71 (130) Zobes 40.1 Solsweig 71 (130) Zobes 40.1 Solsweig 71 (130) Zobes 40.1 Solsweig 71 (130) Zobes 70.1 Zobes	BR-A3BF2F5	25538.5729	59.5239	166.0360	25538.6133	59.5239	166.0253	0.0404	0.0000	-0.0107	0.0423			
BR-A3CY2F1 25917.4707 65.0153 150.0440 25917.4746 56.0153 150.0440 -0.0031 -0.0032 0.0032 0.0003 0.0000 0.01014 0.0001 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0000 0.0011 0.0001 0.1011 BR-A38D4F1 28107.7835 50.0460 150.0477 150.046 150.0477 0.0001 0.1471 0.1450 0.1752 0.1450 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1451 0.1752 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0	BR-A3BPM3F1 BR-A3BPM3F2	25666 3232	58 7715	71.0130	25655.4017	58,7692	71.0429	-0.0472	-0.0023	0.0299	1.0537			
BR-A3CY2F2 25752.4529 54.9962 150.0610 25752.4543 54.9962 150.0610 0.0001 0.0101 0.0101 0.0101 0.0102 0.0114 0.0000 0.0011 0.0002 0.0114 0.0000 0.0012 0.0114 0.0000 0.0012 0.0114 0.0000 0.0012 0.0114 0.0002 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0114 0.0002 0.0116 0.0114 0.0002 0.0110 0.0011 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 0.0002 0.0110 0.0101 0.0101 0.0101 0.0111 0.0101 0.0114 0.0001 0.0116 0.1447 0.0001 0.0116 0.1447 0.0002 0.0018 0.1401 0.0002 0.0018 0.1401 0.0002 0.0019 0.1401 0.0002 0.0011 0.0002 0.0011 0.0014 0.0002 0.0011 0.0022 0.0011	BR-A3CY2F1	25917.4970	55.0153	150.0480	25917.4749	55.0150	150.0402	-0.0221	-0.0003	-0.0078	0.1205			
BR-A35(727 2567.3073 50.216 87.8607 2667.2803 50.221 47.8603 20.021 47.8603 20.021 47.8603 20.021 47.8603 20.021 47.8603 20.022 40.7603 20.021 47.8603 20.021 47.8603 20.021 47.8603 20.021 47.8603 20.021 47.8603 20.021 47.8603 20.021 47.8603 20.021 47.8603 20.021 47.8603 20.021 47.8603 20.021 47.8603 20.021 47.8603 20.021 47.8603 20.021 47.8603 20.021 47.8603 180.0171 40.012 40.022 45.8261 180.0171 40.0021 40.018 47.8771 118.00461 40.002 40.0021 40.0124 40.0021 40.0124 40.0021 40.0124 40.0021 40.0124 40.0021 40.0124 40.0021 40.0124 40.0021 40.0124 40.0021 40.0124 40.0021 40.0124 40.0021 40.0124 40.0021 40.0124 40.0021 40.0124 40.0021	BR-A3CY2F2	25752.4529	54,9952	150.0510	25752.4543	54,9952	150.0611	0.0014	-0.0000	0.0101	0.0112			
BR-A38D4F1 25839.7583 50.0660 160.0210 26439.7385 50.0660 160.0021 0.0168 -0.0011 0.0762 0.10762 0.0002 -0.0010 0.14450 0.1385 BR-A38D4F5 25803.312 47.5731 180.0107 -0.0740 0.0002 -0.0022 -0.0012 0.1020 0.338 BR-A38F752 25967.3426 54.1554 166.0100 25977.5325 54.1557 166.010 -0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.00150 0.0557 0.0057	BR-A3CY2F4	25967.2983	55.0218	-97.9830	25967.2963	55.0222	-97,9931	-0.0020	0.0002	-0.0101	0.1071			
BR-A3BD4F2 20130.7560 50.0447 190.0000 20130.7433 50.0446 190.1477 -0.0011 -0.147 -0.0001 0.1447 0.1002 0.1447 0.0001 0.1447 -0.0001 0.1447 0.0001 0.0176 0.0002 0.0478 0.0002 0.0478 0.0002 0.0478 0.0002 0.0176 0.0002 0.0458 0.0002 0.0176 0.0002 0.0176 0.0002 0.0176 0.0002 0.0176 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0014 0.0002 0.0011 0.0002 0.0011 0.0002 0.0011 0.0002 0.0011 0.0002 0.0011 0.0002 0.0011 0.0002 0.0011 0.0002 0.0011 0.0002 0.0011 0.0014 0.0011 0.0014 0.0011 0.0014 0.0011 0.0014 0.0011 0.0014 0.0011 0.0014 0.0001 0.0116 <th>BR-A3BD4F1</th> <th>25839.7583</th> <th>50.0862</th> <th>180.0210</th> <th>25839.7385</th> <th>50.0860</th> <th>180.0992</th> <th>-0.0198</th> <th>-0.0001</th> <th>0.0782</th> <th>0.1027</th>	BR-A3BD4F1	25839.7583	50.0862	180.0210	25839.7385	50.0860	180.0992	-0.0198	-0.0001	0.0782	0.1027			
BR-A38DF3 2000/2501 48.205 180.1010 20047/2123 49.805 -0.3001 -0.0002 -0.0001 0.0313 -0.0010 0.0313 -0.0010 0.0313 -0.0010 0.0313 -0.0010 0.0313 -0.0010 0.0313 <t< th=""><th>BR-A3BD4F2</th><th>26139.7580</th><th>50.0947</th><th>190.0030</th><th>26139.7433</th><th>50.0946</th><th>180.1477</th><th>-0.0147</th><th>-0.0001</th><th>0.1447</th><th>0.1603</th></t<>	BR-A3BD4F2	26139.7580	50.0947	190.0030	26139.7433	50.0946	180.1477	-0.0147	-0.0001	0.1447	0.1603			
BR-A3BDHFS 25800 3212 47 5390 160 0070 26002 </th <th>BR-A3BD4F3 BR-A3BD4F4</th> <th>26179.8232</th> <th>47.5773</th> <th>180.0510</th> <th>26179.7923</th> <th>48.8201</th> <th>179,9984</th> <th>-0.0376</th> <th>-0.0002</th> <th>-0.0198</th> <th>0.1275</th>	BR-A3BD4F3 BR-A3BD4F4	26179.8232	47.5773	180.0510	26179.7923	48.8201	179,9984	-0.0376	-0.0002	-0.0198	0.1275			
BR-A36F3F1 2777.5071 64.1380 166.0300 2777.5322 64.1382 166.0176 -0.0174 0.1002 -0.0124 0.1384 BR-A36F3F1 26977.5071 64.1382 166.0107 26977.3237 74.1671 166.0101 -0.0124 0.1384 0.1002 -0.0012 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0004 0.0001 <t< th=""><th>BR-A3BD4F5</th><th>25880.3212</th><th>47.5398</th><th>180.0280</th><th>25880.2610</th><th>47.5393</th><th>180.0171</th><th>-0.0602</th><th>-0.0003</th><th>-0.0109</th><th>0.1440</th></t<>	BR-A3BD4F5	25880.3212	47.5398	180.0280	25880.2610	47.5393	180.0171	-0.0602	-0.0003	-0.0109	0.1440			
BR-A3BFJF2 2000, 4-20 5, 100-1 100-100 2000, 3-20 0.0001	BR-A3BF3F1	25777.5971	54,1380	166.0300	25777.5232	54,1382	166.0176	-0.0740	0.0002	-0.0124	0.1339			
BR-A38F4F2 20027 8427 51,7576 160 610 20027 7802 51,7576 168 1236 -0.0525 0.0000 0.0722 0.0001 0.0732 0.0001 0.0132 0.0000 0.0010 0.0133 0.0535 0.0535 0.0000 0.0131 0.0455 0.0000 0.0131 0.0455 0.0000 0.0131 0.0455 0.0000 0.0131 0.0455 0.0000 0.0131 0.0455 0.0000 0.0131 0.0455 0.0000 0.0131 0.0455 0.0321 0.0000 0.0135 0.0000 0.0135 0.0000 0.0105 0.0343 0.0000 0.0105 0.0343 0.0000 0.0105 0.0454 0.0000 0.0000 0.0105 0.0441 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0135 0.0001 0.0135 0.0000 0.0001 0.0135 0.0001 0.0135 0.0001 0.0136 0.0001 0.0136 0.0001 0.0135 0.0001 0.0136 0.0001 0.0136 0.0001 0.0136	BR-A3BF3F3	25905.8475	52 0432	166 0810	25905 5878	52 0434	166 0926	-0.0189	0.0001	0.0016	0.0889			
BR-A3BFAFF 22845.509 51.7235 160.0400 22645.401 51.7235 0.0011 0.0135 0.0235 0.0010 0.0135 0.0535 0.0264 0.0010 0.0135 0.0265 0.0010 0.0135 0.0265 0.0010 0.0135 0.0457 BR-A3BFMAFF1 22696.3403 50.3507 71.0130 29968.842 50.3077 71.1205 0.0387 -0.0006 0.0116 0.3985 BR-A3SD1F2 22687.7071 50.8874 78.4160 25917.7119 50.8874 79.4056 0.0024 -0.0001 0.02245 0.0001 0.02245 0.0001 0.02245 0.0001 0.02245 0.0001 0.02245 0.0001 0.00224 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0000 0.0112 0.0004 0.0000 0.0112 0.0004 0.0000 0.0000 0.0001 <th>BR-A3BF3F4</th> <th>26027.8427</th> <th>51,7575</th> <th>166.0510</th> <th>26027.7902</th> <th>51.7576</th> <th>166.1236</th> <th>-0.0525</th> <th>0.0000</th> <th>0.0726</th> <th>0.0907</th>	BR-A3BF3F4	26027.8427	51,7575	166.0510	26027.7902	51.7576	166.1236	-0.0525	0.0000	0.0726	0.0907			
Brt.A3BFM4F2 29964 4403 50,0505 71,1130 20064,313 50,0507 71,1043 20,066 2003 71,0150 20064,313 50,0507 71,1043 20,006 0,1163 0,0006 0,1163 0,0006 0,1163 0,0006 0,1163 0,0006 0,1163 0,0006 0,1163 0,0006 0,1163 0,0006 0,1163 0,0006 0,1163 0,0006 0,1163 0,0006 0,1163 0,0006 0,1163 0,0006 0,0006 0,1163 0,0006 0,0006 0,1163 0,0006 0,0006 0,1163 0,0006	BR-A3BF3F5	25848.5009	51.7235	166.0400	25848.4616	51.7235	166.0535	-0.0453	0.0001	0.0135	0.0529			
BR-A3SD1F1 25865.3006 50.0009 158.0777 26656.4035 60.0001 0.0236 0.0261 0.0236 0.0261 0.0236 0.0261 0.0236 0.0001 0.0236 0.0001 0.0236 0.0001 0.0013 0.0014 0.0003 0.0014 0.0003 0.0014 0.0003 0.0014 0.0003 0.0014 0.0003 0.0014 0.0003 0.0014 0.0003 0.0014 0.0003 0.0014 0.0003 0.0014 0.0003 0.0014 0.0003 0.0014 0.0003 0.0014 0.0003 0.0014 0.0003 0.0014 0.0004 0.0004 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0001 0.0014 0.0001 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014	BR-A3BPM4F1 BR-A3BPM4F2	25968.8434	50.5079	71.0130	25968.8820	50.5071	71.1295	0.0200	-0.0010	0.0313	0.3983			
BR-A35D1F2 25817.7071 50.8874 78 4160 25817.7119 50.8871 78 4056 0.0004 -0.0003 -0.0074 0.1416 BR-A35D1F2 26817.7071 50.8871 78 3746 50.8871 78 4056 0.0004 -0.0003 -0.0074 0.0012 -0.0046 0.0002 -0.0046 0.0002 -0.0046 0.0000 -0.0114 0.0085 BR-A38F4F1 2693.4610 46.2070 166.0147 2693.4604 46.1067 165.9964 -0.0436 0.0000 -0.0121 0.0010 -0.01246 0.0000 -0.01216 0.0001 -0.01246 0.0000 -0.0121 0.0011 0.0344 0.0000 -0.0121 0.0011 0.0342 0.0001 0.0142 0.0001 0.0142 0.0001 0.0142 0.0001 0.0142 0.0001 0.0142 0.0001 0.0142 0.0001 0.0142 0.0001 0.0143 0.0001 0.0143 0.0014 0.0140 0.0426 0.0001 0.0143 0.0014 0.0441 0.0000 0.0011 0.0454 <t< th=""><th>BR-A3SD1F1</th><th>25955.3608</th><th>50.9099</th><th>158.9767</th><th>25955.4035</th><th>50.9099</th><th>159.0052</th><th>0.0428</th><th>-0.0001</th><th>0.0285</th><th>0.0591</th></t<>	BR-A3SD1F1	25955.3608	50.9099	158.9767	25955.4035	50.9099	159.0052	0.0428	-0.0001	0.0285	0.0591			
BR-A3BF4F1 2002-2.170 00.83/H 78/376 2002-2.00 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001	BR-A3SD1F2	25817.7071	50.8874	79.4160	25817.7119	50,8871	79.4086	0.0048	-0.0003	-0.0074	0.1416			
BR-A3BF4F2 20110 40110 401007 20110 401007 0.0000 -0.0000 -0.0000 -0.0010 0.0010 -0.0121 0.0511 BR-A3BF4F2 20110 201111 201110 201111	BR-A3BF4F1	25939.4910	46.2070	166.0147	25939.4604	48 2070	185,9988	-0.0040	0.0002	-0.0161	0.0348			
BR-A3BF4F3 20032_2742 45.0032 166.0167 20032_2454 45.0032 105.9061 -0.0288 -0.0001 -0.0286 0.0001 -0.0246 0.0001 0.0341 0.0822 0.0831 0.0821 -0.0246 0.0001 -0.0341 0.0000 0.0031 0.0826 0.0001 0.0381 0.0824 0.0341 0.0000 0.0252 0.077 BR-A3BDFF2 2439.4573	BR-A3BF4F2	28119.5111	46.1996	166.0063	26119.4614	46.1987	185.9942	-0.0497	0.0000	-0.0121	0.0518			
DR-A3BF4F2 2009.021 4.3076 100.017 2007.830 4.3076 100.001 -0.052 0.0001 -0.052 0.0001 -0.052 0.0001 -0.052 0.0001 -0.052 0.0001 -0.052 0.0001 -0.052 0.0001 -0.052 0.0001 -0.052 0.0001 -0.052 0.0001 -0.052 0.0001 -0.052 0.0001 -0.052 0.0001 -0.052 0.0001 -0.052 0.0001 -0.052 0.0001 -0.052 0.0000 0.0001 0.0052 0.0000 0.0001 0.0052 0.0000 0.0001 0.0052 0.0000 0.0001 0.0052 0.0000 0.0001 0.0052 0.0000 0.0001 0.0052 0.0000 0.0001 0.0052 0.0000 0.0001 0.0052 0.0000 0.0001 0.0052 0.0001 0.0052 0.0011 0.0554 0.0001 0.0052 0.0001 0.0052 0.0011 0.0554 0.0011 0.0554 0.0011 0.0554 0.0011 0.0554 0.0011 <	BR-A3BF4F3	26032.2742	45.0032	166.0167	26032.2454	45.0032	165.9901	-0.0288	-0.0000	-0.0268	0.0411			
BR-A3BDFF1 2587b 6300 42.4402 180.0407 2647b 8441 42.4401 180.0464 -0.0584 -0.0001 -0.0143 0.0604 BR-A3BDFF2 2017b 8412 2170 5412 24.0416 180.0464 -0.0584 -0.0001 -0.0010 0.0804 BR-A3BDFF2 2013b 8714 41.1822 180.0182 2003b 8477 41.1823 180.0120 -0.0004 0.0000 0.0001 0.0052 0.0011 0.0564 0.0001 -0.0051 0.0001 0.0012 0.0001 0.0012 0.0001 0.0012 0.0011 0.0526 0.0011 0.0526 0.0011 -0.0526 0.0011 0.0526 0.0001 -0.0526 0.0011 -0.0526 0.0011 -0.0526 0.0011 -0.0526 0.0001 -0.0526 0.0011 -0.0526 0.0001 -0.0526 0.0001 -0.0526 0.0001 -0.0526 0.0001 -0.0526 0.0001 -0.0526 0.0001 -0.0526 0.0001 -0.0526 0.0001 -0.0126 0.0001 -0.1286 0.0131	BR-A3BF4F5	25939.3213	43.7993	166.0343	25939.3217	43,7992	105,9821	0.0004	-0.0001	-0.0522	0.0683			
BR-A3BDF2 23179.5916 42.4316 190.0985 26179.5412 42.4316 190.0786 -0.0004 -0.0000 -0.0391 0.0391 0.0858 BR-A3BDF52 203.94571 41.822 180.0122 190.9452 1000.946 -0.0004 -0.0004 -0.0000 -0.0034 0.0005 0.0271 BR-A3BDF52 203.9447 39.0123 179.6510 0.0224 -0.0204 -0.0001 -0.0525 0.0001 -0.0525 0.0011 0.0525 0.0714 BR-A3BDF52 25844.0356 38.2831 179.6510 168.0450 0.02024 -0.0000 -0.0252 0.0011 -0.0528 0.0011 0.0525 0.0014 0.0000 -0.0011 0.0528 0.0011 0.0011 0.0014 0.0014 0.0011 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0004 0.0014 0.	BR-A3BD5F1	25879.9399	42.4692	180.0607	25879.8841	42,4691	180.0464	-0.0558	-0.0001	-0.0143	0.0692			
BR-A3BDFF 201036-67-31 41.162.2 100042.178 174.162.3 100042.178 0.0001 0.00236 0.0001 0.00236 0.0001 0.00236 0.0011 0.00236 0.0011 0.00236 0.0011 0.00236 0.0011 0.00236 0.0011 0.00236 0.0011 0.00236 0.0011 0.00236 0.00011 0.00236 0.00011 0.00236 0.00011 0.00236 0.00011 0.00236 0.00011 0.00236 0.00011 0.00236 0.00011 0.00236 0.00001 0.00236 0.00001 0.00236 0.00001 0.00236 0.00001 0.00236 0.00001 0.00236 0.00001 0.00036 0.00010 0.00010 0.00000	BR-A3BD5F2	26179.5918	42.4316	180,0395	26179.5412	42.4316	180.0788	-0.0504	-0.0000	0.0391	0.0665			
BR-A3BDFFF 25830.3847 39.0222 170.04918 25830.3872 39.0221 170.04918 25830.3872 39.0221 170.04918 25830.3872 39.0221 170.04918 25830.3872 39.0221 170.04918 25830.3872 39.0221 170.04918 25830.3872 39.0221 170.04918 25830.3872 39.0221 170.04918 25830.3872 39.0221 170.04918 25830.3872 39.0221 170.04918 25830.3872 39.0221 170.04918 25830.3872 39.0221 170.04918 25830.3872 39.0221 170.04918 25830.3872 39.0221 170.04918 25830.3822 20.0001 -0.0001 -0.0032 -0.0001 -0.0032 -0.0001 -0.0032 -0.0001 -0.0032 -0.0001 -0.0032 -0.0001 -0.0032 -0.0001 -0.0032 0.0001 -0.0032 0.0001 -0.0032 0.0001 -0.0032 0.0001 -0.0032 0.0001 -0.0032 0.0001 -0.0032 0.0001 -0.0032 0.0001 -0.0032 0.0001 -0.0032 0.0001 -0.0014	8R-A38D5F4	26139,4859	39,9138	179.9516	26139.5124	39,9137	179,8991	0.0266	-0.0001	-0.0033	0.0714			
BR-A38F6F1 2646.0356 38.2831 166.0778 28645.0446 38.2831 165.4560 0.0220 -0.0000 -0.1266 0.1300 BR-A38F6F2 26027.5303 38.2460 166.0369 26027.5397 38.2460 165.5082 0.0007 -0.0000 -0.1276 0.1301 BR-A38F6F2 26005.2460 37.0633 166.0007 26005.2660 37.0633 165.6281 -0.0074 0.0000 -0.0776 0.0796 BR-A38F6F2 2567.0543 36.5615 165.6281 -0.0273 -0.0000 -0.0273 -0.0000 0.0377 BR-A38F6FF 2567.557 39.4,4668 166.0017 25777.1089 35.8685 165.6975 -0.0125 0.0000 -0.0014 0.0000 BR-A38FFF7 25675 39.4,4668 176.0017 25777.1089 35.8685 17.0038 0.0031 1.5684	BR-A3BD5F5	25839.3847	39.9222	179.9018	25839.3873	39,9221	179.8780	0.0026	-0.0001	-0.0838	0.0914			
BR-A3BF5F2 25002-35004 35.4510 160.0057 2002.7507 35.4500 105.0022 0.0007 0.0000 0.0786 0.0786 BR-A3BF5F2 25002-5604 37.0533 166.0057 2005.2566 37.0633 165.6251 0.0074 0.0000 0.0786 BR-A3BF5F4 2507.038 35.6512 165.0605 2507.1089 35.8615 165.9730 0.0273 0.0000 0.0035 0.0337 BR-A3BF5F5 25777.1215 35.8685 166.0017 25777.1089 35.8685 165.9675 0.0125 0.0001 0.0142 0.0300 BR-A3BFM5F1 25065.5578 39.4468 17.0130 25068.4728 9.6502 71.0447 0.03550 0.0023 0.0337 1.5864	BR-A3BF5F1	25848.0359	38.2831	166.0778	25848.0649	38.2831	165.9490	0.0290	-0.0000	-0.1298	0.1330			
BF-A3BF6F4 28657.0638 36.8512 165.6665 26657.0365 36.8511 165.9730 -0.0273 -0.0000 0.0035 0.0337 BF-A3BF6F5 25777.1216 35.6665 160.0017 25777.1065 35.8665 165.9675 -0.0126 0.0001 -0.0142 0.0037 BF-A3BF6FF1 26966.575 36.4666 7.10130 25668.4728 9.6021 71.0467 -0.0850 0.0035 0.0337 1.5664	BR-A3BF5F3	25905,2640	37.0633	166.0067	25905.2566	37.0633	165.9281	-0.0074	0.0000	-0.0788	0.0798			
BR-A3BF5F5 25777.1215 35.8685 166.0017 25777.1089 35.8685 165.9675 -0.0125 0.0001 -0.0142 0.0300 BR-A3BPM5F1 25968.5578 39.4986 71.0130 25968.4728 39.5021 71.0467 -0.0850 0.0035 0.0337 1.5684	BR-A3BF5F4	25957.0638	35.8512	105.9095	25957.0365	35.8511	105.9730	-0.0273	-0.0000	0.0035	0.0337			
DRAMOPTINGT 20406.0070 34.4400 (1.0100 20406.4720 34.0021 (1.0407 -0.0800 0.0030 0.0337 1.0004	BR-A3BF5F5	25777.1215	35,8685	166.0017	25777.1089	35,8685	165.9875	-0.0125	0.0001	-0.0142	0.0300			
BR-A3BPM5F2 25964.0481 39.3710 71.0130 25964.1653 39.3744 71.0220 0.1171 0.0033 0.0090 1.5160	BR-A3BPM5F2	25964.0481	39.3710	71.0130	25964,1653	39.3744	71.0220	0.1171	0.0033	0.0090	1.5160			

SA 2013.03.22 (x64)

WORKING FRAME: A::BOOSTER UNITS: Millimeters Page 18 / 22

Part 2: Deviation	is of All Elements
-------------------	--------------------

Vector Group CYU ANALYSIS Auto Vectors: Groups: REFERENCE FINAL to FID ONLY											
Name	CTOAN	Begin	Vedors. O	toops heren	End	IO FILL ONL	Delta				
	R1	Theta1	Z1	R2	Theta2	Z2	dR	dTheta	dZ	Mag	
BR-A3SD2F1	25954.7703	39.0937	158.9800	25954.7146	39.0940	159.0148	-0.0557	0.0003	0.0348	0.1660	
BR-A3SD2F2	25817.0764	39.1140	79.3050	25817.1975	39,1140	79.2672	0.1211	0.0000	-0.0378	0.1278	
BR-A3SD2F5	26091.9945	39.0712	79.8870	26091.9142	39.0713	79.8474	-0.0803	0.0001	-0.0396	0.0925	
BR-A3BD6F1	25677.0880	34,4689	180.0569	25677.1297	34,4690	180.0483	0.0417	0.0001	-0.0085	0.0573	
BR-A3BD0F2	25975.0692	34.3890	180.0237	20975.0885	34.3890	179.9940	0.0193	0.0000	-0.0297	0.0355	
BR-A3BD0F3 BR-A3BD0F4	25/99.71/0	33,1013	170 0412	25799.7057	33,1011	179.9427	-0.0119	-0.0002	-0.0818	0.1115	
BR-A3BDAF5	25563 5316	31 9096	180,0007	25563 3056	31 0004	179 8708	-0.1360	-0.0002	-0.1301	0.203	
BR-A3BF6F1	25537.7843	30,4823	166.0279	25537,7403	30,4825	165,9449	-0.0441	0.0002	-0.0830	0.1345	
BR-A3BF6F2	25715.7693	30.4209	166.0038	25715.7398	30.4212	165.9364	-0.0298	0.0003	-0.0674	0.1390	
BR-A3BF6F4	25572.7839	28.0065	166.0316	25572.8051	28.0065	166.0789	0.0212	0.0000	0.0473	0.0524	
BR-A3BF6F5	25393.7700	28.0513	166.0315	25393.7750	28.0513	166.0560	0.0050	-0.0000	0.0245	0.0252	
BR-A3BPM6F1	25665.6148	31.2349	71.0130	25665.4726	31.2362	71.5210	-0.1422	0.0013	0.5080	0.7827	
BR-A3BPM0F2	2005/.0885	31,1000	150 1120	20057.0990	31.1078	11.5289	-0.0895	0.0012	0.0109	0.752	
PR-ABCYSES	25910.6920	25.0110	150,1120	25910.8900	25.0110	150,1441	-0.0020	0.0002	0.0321	0.0220	
BR-43CY3F3	25068 7080	34 0843	97.9570	25066 7881	34 0846	98.0438	-0.0010	0.0003	0.0342	0.1431	
BR-A3CY3F4	25966.7699	34,0842	-97 8920	25968 9464	34 0843	-07 8060	0.1766	0.0001	-0.0049	0.1837	
BR-A3BD7F1	25252.3307	26.6484	180.0380	25252.3273	26.6484	180.0132	-0.0034	-0.0000	-0.0228	0.0248	
BR-A3BD7F2	25547.0816	28.5225	179.9960	25547.0854	26.5225	180.0167	0.0237	-0.0000	0.0207	0.0317	
BR-A3BD7F3	25335.0778	25.2919	180.0080	25335.0717	25,2918	180.0927	-0.0061	-0.0001	0.0847	0.0950	
BR-A3BD7F4	25359.4462	23.9683	180.0060	25359.3586	23.9683	180,1711	-0.0878	-0.0001	0.1651	0.188	
BR-A3BD7F5	25062.4837	24.0851	180.0240	25062.3953	24.0850	180.1424	-0.0884	-0.0000	0.1184	0.149	
BR-A3BF7F1	24975.0687	22,3827	165.9650	24975.0822	22.3827	166.0284	0.0135	0.0000	0.0634	0.065	
BR-A3BF/F2	20101.0282	22.2848	100.0030	20101.0481	22.2949	100.0301	0.0199	0.0001	0.0331	0.048.	
DR-ASDE7E4	24900.8335	10 8478	188,0030	24900.0002	10 2475	166 1020	0.0404	-0.0000	0.0720	0.046	
BR-A3BE7E5	24784 6850	19,9187	166 0540	24764 8905	19,9186	188 0812	0.0048	-0.0001	0.0072	0.040	
BR-A3BPM7F1	25165.3992	23.5927	71.0130	25165,4074	23,5928	71,4983	0.0082	0.0001	0.4833	0.486	
BR-A3BPM7F2	25153.4697	23.4634	71.0130	25153.5234	23,4635	71.4529	0.0537	0.0001	0.4399	0.4465	
BR-A3CX3F1	25522.0238	27.1360	124.0120	25522.0530	27,1359	124.0134	0.0294	-0.0001	0.0014	0.049	
BR-A3CX3F2	25327.9880	27.1903	124.0170	25327.9552	27.1903	124,1232	-0.0327	-0.0000	0.1062	0.1124	
BR-A3CX3F3	25573.7831	27.1216	73.8810	25573.8568	27.1213	73.8639	0.0737	-0.0004	-0.0171	0.1778	
BR-A3CX3F4	25673.9736	27.1224	+73.8710	25673.8736	27.1206	-73.9000	-0.0999	-0.0018	-0.0856	0.822	
BR-A33F2F1	20128.0049	23.1820	109.0407	25128.0780	23,1820	109.0401	0.0231	-0.0000	-0.0010	0.028	
BB_A395255	25282 8700	23.1108	70,8792	25262 0300	23,2400	70 7020	0.0501	0.0003	0.0947	0.100	
BR-A3BD8F1	24358 7772	14,8301	180.0639	24358 7374	14,8302	180.0787	-0.0398	0.0001	0.0148	0.049	
BR-A3BD8F2	24651.7473	14.7015	180.0772	24651.7604	14,7015	180.0698	0.0131	0.0001	-0.0073	0.030	
BR-A3BD8F3	24441.5164	13.4245	180.0330	24441.5441	13.4246	179.9778	0.0277	0.0001	-0.0553	0.072	
BR-A3BD8F4	24468.3233	12.0528	179.9871	24468.3218	12.0528	179.9546	-0.0015	0.0001	-0.0125	0.025	
BR-A3BD8F5	24170.9855	12.1498	179.9248	24171.0140	12.1498	179.9057	0.0285	0.0000	-0.0191	0.038	
BR-A3CY4F1	24638.0188	15.8383	150.1371	24638.0477	15.8383	150.1421	0.0289	-0.0001	0.0050	0.0458	
DR-ASCIEF2	244/4.3385	10,88/3	100.0099	244/4.3002	10.88/1	149.9970	0.0109	-0.0002	-0.0124	0.103	
DR-ABCYAEA	24057.0084	15,6217	07.0050	24007.7201	15,6210	00.004/	0.0307	-0.0001	0.0925	0.0776	
BR-430D2E1	24850 0043	18 8008	230 1957	24850 8520	18 8008	230 1038	0.0523	0.00002	-0.0021	0.052	
BR-A30D2F2	24693 1780	19,2247	230,1407	24693 1922	19,2246	230 1733	0.0142	-0.0001	0.0328	0.051	
BR-A3QD2F3	24879.9242	19.1422	229.9611	24879.8843	19,1421	229.9619	-0.0400	-0.0001	0.0008	0.064	
BR-A3QD2F4	24837.9191	18.6210	229.9798	24837.8741	18.6209	230.0010	-0.0450	-0.0001	0.0212	0.0661	
BR-A3QG2F1	24504.7028	16.6108	230.1519	24504.6473	16,6108	230.1277	-0.0552	0.0000	-0.0242	0.0613	
BR-A3QG2F2	24538.4280	17.1424	230,1064	24538.3620	17.1424	230.0725	-0.0660	0.0000	-0.0339	0.075	
BR-A3002F3	24/20.2902	16.5478	229.9010	24/20.2204	10/03	228.8374	-0.0098	0.0001	-0.0230	0.080	
BR-430E2E1	24074 4053	10 3981	230.0591	24074 4383	10 3982	230 0392	0.0330	0.0000	-0.0120	0.039	
BR-A30F2F2	24118,9845	10,9356	230 0285	24117.0442	10,9356	230 0200	0.0597	-0.0000	-0.0085	0.082	
BR-A3QF2F3	24303.6047	10.8507	230,1350	24303.8737	10.8508	230,1154	0.0690.0	-0.0001	-0.0198	0.0860	
BR-A3QF2F4	24261.3930	10.3172	230.1705	24261.4182	10.3171	230.1507	0.0251	-0.0001	-0.0198	0.0429	
BR-CSBPM1F1	24084.8646	9.2127	71.0130	24083.8482	9.2126	73.4809	-1.0164	-0.0001	2.4679	2,6693	
BR-CSBPM1F2	24075.6469	9.0765	71.0130	24074.7644	9.0758	73.4298	-0.8824	-0.0008	2.4168	2.586	
BR-CSCX1F1	24037.3553	9.9430	132.5350	24037.3343	9.9431	132.4956	-0.0209	0.0001	-0.0394	0.0504	
BR-CSCX1F2	24230.2809	9.8623	132.0040	24230,2155	9.8522	132.0191	-0.0664	-0.0001	-0.0349	0.0779	
BR-CSCV1E4	24281.0321	9,8300	82 5420	24281 4592	9,8399	82 5652	-0.0029	-0.0001	-0.0800	0.0803	
BR-A4OFIE1	24117 3038	-10.9353	230 1147	24117 3085	-10 9354	230 1002	0.0047	+0.0001	-0.0148	0.0344	
BR-A4OF1F2	24074.6688	-10.3979	230.0000	24074.6511	-10.3979	230.0575	-0.0177	-0.0001	-0.0334	0.043	
BR-A4QF1F3	24261.6515	-10.3168	229,9962	24261.6470	-10.3168	230.0059	-0.0045	0.0000	0.0097	0.0128	
BR-A4QF1F4	24303.8954	-10.8503	230.0015	24303.9115	-10.8503	230.0275	0.0160	-0.0000	0.0260	0.0308	
BR-CSBPM2F1	24075.7091	-9.0765	71.0130	24075.6374	-9.0742	72.0641	-0.0717	0.0023	1.0511	1.4220	
	04004 0080	0.0407	71 0120	04004 0000	0.0400	70 1120	0.0220	0.0010	1 1000	1 2842	
BR-CSBPM2F2	24084.8208	-0.2121	11.0100	24004.0230	-8.2108	12.1100	-0.0000	0.0010		1.000	

WORKING FRAME: A::BOOSTER UNITS: Millimeters Page 19 / 22

	CYUAN	ALYSIS Auto	Ve Vectors: G	ctor Group roups: REFERI	ENCE FINAL	to FID ONLY	e e			
Name	R1	Begin Theta 1	71	RO	End Theta2	72	dBI	dThetal	ta d7[Mag
BR-CSCX2F3	24281.5804	-9.8413	82.5121	24281.5957	-9.8413	82.5211	0.0153	0.0000	0.0090	0.0248
BR-CSCX2F4	24281.6267	-9.8416	-82.3809	24281.6497	-9.8419	-82.4373	0.0231	-0.0003	-0.0563	0.1489
BR-A4BD1F1 BR-A4BD1F2	24468.2084	-12.0510	180.0054	24468.2570	-12.0509	180.0311	0.0485	0.0001	0.0057	0.0872
BR-A4BD1F3	24441.5483	-13.4228	179.9819	24441.5574	-13.4228	179.9311	0.0091	0.0001	-0.0308	0.0424
BR-A4BD1F4	24651.9241	-14.6997	179.9950	24651.8907	-14.6998	179.9958	-0.0334	-0.0001	0.0007	0.0636
BR-A4CY1F1	24638.1439	-15.8381	150.0021	24638.1274	-15,8380	150.0055	-0.0165	0.0001	0.0034	0.0376
BR-A4CY1F2	24474.6233	-15.8877	150.0750	24474.6005	-15.8878	150.0819	-0.0228	-0.0001	0.0069	0.0498
BR-A4CY1F3	24687.7136	-15.8232	97.8961	24687.7222	-15.8230	97.8883	0.0086	0.0002	-0.0078	0.0764
BR-A4QD1F1	24693.0505	-19.2247	230.1174	24692.9660	-19.2246	230.1073	-0.0845	0.0001	-0.0101	0.0878
BR-A4QD1F2	24650.8628	-18.6996	230.0580	24650.8874	-18,6995	230.0525	0.0246	0.0001	-0.0055	0.0472
BR-A4QD1F3 BR-A4QD1F4	24837.8565	-18.6212	229,9454	24837.8908	-18.6212	229.9242	0.0342	-0.0000	-0.0211	0.0408
BR-A4QG1F1	24538.9891	17.1419	230 2888	24538.9507	-17.1419	230.2918	-0.0383	0.0000	0.0030	0.0384
BR-A4QG1F2	24505.1572	-16.6105	230 2680	24505.0998	-16.6105	230.2681	-0.0575	0.0001	0.0001	0.0622
BR-A4QG1F3 BR-A4QG1F4	24693.2567	-16.5477	229.7939	24693.2104	-16.5476	229.7947	-0.0463	0.0001	0.0008	0.0529
BR-A4BD2F1	25062.0774	-24.0630	180.1706	25082.1113	-24.0632	180.2084	0.0339	-0.0002	0.0378	0.0928
BR-A4BD2F2	25359.1397	-23.9858	180.1260	25359.1497	-23.9661	180,1984	0.0101	-0.0003	0.0724	0.1423
BR-A4BD2F3	25334.8569	-25.2896	180.1893	25334.8807	-25.2898	180.2301	0.0238	-0.0002	0.0408	0.1149
BR-A4BD2F5	25252 2630	-26.6464	180.1975	25252.3350	-28.8467	180.2044	0.0720	-0.0003	0.0069	0.1472
BR-A4BF1F1	24764.6761	-19.9183	166.0270	24764.6629	-19.9182	166.0189	-0.0133	0.0001	-0.0081	0.0550
BR-A4BF1F2	24942.0746	-19.8473	166.0174	24942.0709	-19.8472	166.0259	-0.0037	0.0001	0.0085	0.0478
BR-A4BF1F4	25151.0320	22,2948	168.0093	25151,1154	-22.2947	168.0347	0.0835	0.0001	0.0254	0.0940
BR-A4BF1F5	24975.1157	-22.3826	166.0097	24975.1833	-22.3824	166.0130	0.0677	0.0002	0.0033	0.1023
BR-A4BPM1F1	25153.4697	-23.4634	71.0130	25153,4228	-23,4635	70.8895	-0.0470	-0.0001	-0.1235	0.1378
BR-A4CX1F1	25327.9515	-27,1910	124 0880	25327.9172	-23.5928	124,1228	-0.0343	0.0001	0.0346	0.0561
BR-A4CX1F2	25522.4390	-27,1384	124.0790	25522.4139	-27.1383	124.1098	-0.0252	0.0001	0.0308	0.0495
BR-A4CX1F3	25573.8734	-27.1220	73.9440	25573.8420	-27.1220	73.9914	-0.0314	0.0001	0.0474	0.0651
BR-A4SE1E1	25127 8802	-27.1225	159 0208	250/3.9000	-27.1220	158 9738	-0.0100	-0.0001	-0.0472	0.0040
BR-A4SF1F4	25263.1237	-23.1210	-79.4358	25263.3244	-23.1211	-79.4043	0.2007	-0.0001	0.0315	0.2100
BR-A4SF1F5	25263.0222	-23.1195	79.3379	25263.0846	-23.1194	79.3692	0.0824	0.0000	0.0313	0.0721
BR-A4BD3F1 BR-A4BD3F2	25861 9176	-31,8582	180.0090	25861 9366	-31,8090	179 9948	0.0120	0.0002	-0.0317	0.0777
BR-A4BD3F3	25799.2561	-33,1506	180.0847	25799.1912	-33.1506	180.0757	-0.0649	-0.0000	-0.0089	0.0660.0
BR-A4BD3F4	25974.9719	-34.3881	180.0498	25974.9079	-34.3882	180.0707	-0.0640	-0.0001	0.0211	0.0784
BR-A48D3F5 BR-A48F2F1	25393,7818	-34.4688	1/9.9951	25393.8021	-34.4688	1/9.9820	0.0202	-0.0001	-0.00131	0.0911
BR-A4BF2F2	25572.6935	-28.0069	166.0376	25572.6985	-28.0071	166.0446	0.0049	-0.0002	0.0070	0.0736
BR-A4BF2F3	25557.8234	-29.2414	166.0765	25557.7417	-29.2415	166.0343	-0.0817	-0.0001	-0.0423	0.1069
BR-A4BF2F4 BR-A4BF2F4	25/10.0728	-30.4213	166.0707	25/15.010/	-30,4210	166.0000	-0.0621	-0.0002	-0.0343	0.1248
BR-A4BPM2F1	25657.6885	-31,1066	71.0130	25657.7648	-31.1091	71.5739	0.0764	-0.0024	0.5609	1.2268
BR-A4BPM2F2	25665.6148	-31.2349	71.0130	25665.5429	-31.2372	71.5473	-0.0718	-0.0023	0.5343	1.1733
BR-A4CY2F1 BR-A4CY2F2	25916.9205	-34,9909	150,1070	25916.9427	-34,9908	150,1059	0.0222	-0.0001	-0.0011	0.0002
BR-A4CY2F3	25966.8143	-34.9845	97.9820	25988.8459	-34,9847	97.9780	0.0315	-0.0001	-0.0040	0.0703
BR-A4CY2F4	25966.8238	-34.9847	-97.9590	25966.8372	-34.9858	-97.9997	0.0134	-0.0011	-0.0407	0.4977
BR-A48D4F1 BR-A48D4F2	25839,4405	-39.9210	180.0220	25839.4392	-39,9210	179,8852	-0.0014	0.0000	-0.1368	0.1369
BR-A4BD4F3	26039.9405	41.1807	180.0250	26039,9339	41.1806	180.0266	-0.0066	0.0001	0.0018	0.0610
BR-A4BD4F4	26179.7682	-42.4296	180.0220	26179.8017	-42.4297	180.0276	0.0335	-0.0000	0.0056	0.0381
BR-A48D4F0 BR-A48F3F1	20850.2804	42.40/0	180.0220	20880.3270	-12.40/7	180.0108	0.0411	-0.0001	-0.0052	0.0547
BR-A4BF3F2	25956.8777	-35.8512	166.0040	25956.9238	-35.8512	166.0170	0.0461	0.0001	0.0130	0.0583
BR-A4BF3F3	25905.1778	-37.0835	165.9930	25905.1565	-37.0835	165.9374	-0.0213	0.0001	-0.0556	0.0840
BR-A4BF3F4 BR-A4BF3F5	25847 8001	-38,2491	166.0280	25847 7274	-38.2490	165,9744	-0.0376	0.0000	-0.0638	0.0609
BR-A4BPM3F1	25964.0481	-39.3710	71.0130	25964.1224	-39.3738	71.4244	0.0743	-0.0027	0.4114	1.3133
BR-A4BPM3F2	25968.5578	-39.4986	71.0130	25968.6572	-39.5013	71.4169	0.0994	-0.0027	0.4039	1.2961
BR-A4SD1F1 BR-A4SD1F2	25954,7765	-39.0977	158.9533	25954.8033	-39.0978	158.9344	0.0268	-0.0000	-0.0189	0.0334
BR-A4SD1F5	20092.2231	-39.0763	79.5095	20092.3220	-39.0759	79.4102	0.0995	0.0003	-0.0993	0.2098
BR-A4BF4F1	25939.4670	43.7992	166.0349	25939.4607	-43.7992	166.0540	-0.0062	0.0001	0.0191	0.0304
BR-A4BF4F2 BR-A4BF4F2	26119.4032	45.0021	166.0327	26119,4307 26032 2609	43.8074	166.0242	0.0275	0.0001	-0.0085	0.0540
DR-A4DF4F3	20052.2710	40.0051	100.0083	10032.2898	-10.0050	100.0444	0.0182	0.0003	-0.0238	0.0424

SA 2013.03.22 (x64)

WORKING FRAME: A::BOOSTER UNITS: Millimeters Page 20 / 22

	R1	Theta1	Z1	R2	Theta2	Z2	dR	dTheta	dZ	Mag
BR-A4BF4F4	26119.4173	-46.1987	166.0329	26119,4055	-48.1988	166.0575	-0.0118	-0.0001	0.0246	0.0559
BR-A4BF4F5	25939.4566	46.2070	100.0595	25939.4670	40.2070	100.0520	0.0103	0.0000	-0.0069	0.0215
BR-A4BD5F2	26179.6680	47.5750	179.9871	26179.6626	47.5750	179.9783	-0.0054	0.0000	-0.0088	0.0180
BR-A4BD5F3	26040.2376	-48.8240	180.0798	26040.2568	-48,8240	180.0828	0.0192	-0.0000	0.0028	0.0257
BR-A4BD5F4	26139.8117	-50.0925	180.0265	26139.8728	-50.0926	179.9907	0.0811	-0.0001	-0.0358	0.0773
BR-A4BD5F5	25839.6539	-50.0840	180.0128	25839.6978	-50.0842	179.9890	0.0439	-0.0001	-0.0238	0.0685
BR-A4BF0F1 BR-A4BF5F2	20840.4441	-51.7230	188.0210	20848.4208	-01.7230	100.9071	0.0024	-0.0000	-0.1089	0.0987
BR-A4BF5F3	25905.7060	-52.9433	166.0027	25905.7187	-52.9433	165.9173	0.0128	-0.0000	-0.0854	0.0882
BR-A4BF5F4	25957.4783	-54.1555	165.9702	25957.5058	-54.1556	165.9519	0.0275	-0.0001	-0.0183	0.0505
BR-A4BF5F5	25777.5665	-54.1381	165.9720	25777.5654	-54.1381	165.9467	-0.0010	-0.0000	-0.0253	0.0289
BR-A4BPM4F1 BR-A4BPM4F2	25968.8434	-50.5079	71.0130	25968.7812	-50.5072	71.9104	-0.0622	0.0007	0.9034	0.9599
BR-A4SD2F1	25954.8680	-50.9127	159.0010	25954.8045	-50.9125	159.0107	-0.0635	0.0002	0.0097	0.0965
BR-A4SD2F4	26092.4975	-50.9347	+79.4720	26092.4008	-50.9344	-79.4943	-0.0967	0.0003	+0.0223	0.1785
BR-A4SD2F5	26092.3608	-50.9352	79.4190	26092.2824	-50.9350	79.4074	-0.0784	0.0002	-0.0116	0.1211
BR-A4BD0F1 BR-A4BD8F2	250775 4954	-00.03/8	170 0885	25077.7308	-00.03//	170 0350	0.0462	0.0001	-0.0000	0.1228
BR-A4BD0F3	25800.3154	-56.8554	180.0010	25800.3614	-56.8554	180.0010	0.0460	0.0001	-0.0606	0.0855
BR-A4BD6F4	25863.3282	-58.1481	180.0368	25863.3626	-58.1480	179.9862	0.0344	0.0000	-0.0508	0.0650
BR-A4BD6F5	25564.1532	-58.0973	180.0557	25564.1596	-58.0971	180.0112	0.0064	0.0001	-0.0445	0.0713
BR-A4BF0F1 BR-A4BF0F2	20038.4102	-08.0238	166.0650	25038.4308	-08.0238	166.0027	0.0190	0.0000	-0.0003	0.0700
BR-A4BF6F3	25558.5967	-60.7650	166.0430	25558.5887	-60.7650	165.9928	-0.0080	+0.0000	-0.0502	0.0516
BR-A4BF6F4	25573.7687	-61.9994	165.9810	25573.7436	-81.9995	166.0005	-0.0251	-0.0001	0.0195	0.0583
BR-A4BF6F5	25394.8483	-61.9548	165.9740	25394.8322	-61.9550	165.9660	-0.0161	-0.0001	-0.0080	0.0629
BR.448PM0F1	256558 4034	-58.7715	71.0130	25666.4390	-58.7715	71.0880	0.0486	0.0001	0.0250	0.1425
BR-A4CY3F1	25917.3951	-55.0162	150.0870	25917.4182	-55.0164	150.0459	0.0231	-0.0002	-0.0411	0.0938
BR-A4CY3F2	25752.4342	-54.9948	150.0870	25752.4901	-54.9948	150.0512	0.0560	+0.0000	-0.0358	0.0676
BR-A4CY3F3	25967.3008	-55.0220	98.0910	25967.3244	-55.0221	98.0388	0.0236	-0.0001	-0.0522	0.0778
BR-A4CY3F4 BR-A4BD7F1	25967.3237	-55.0221	180 0050	25967.3900	-00.0220	-97.8419	0.0723	0.0002	-0.0080	0.0997
BR-A4BD7F2	25547.9210	-83.4845	180.0030	25547.9551	-63.4844	179.9650	0.0341	0.0001	-0.0380	0.0661
BR-A4BD7F3	25335.9716	-84.7151	179.9620	25335.9991	-64.7150	179.9415	0.0275	0.0001	-0.0205	0.0643
BR-A4BD7F4	25360.4407	-86.0387	179,9970	25380.4420	-86.0387	180.0028	0.0013	0.0000	0.0058	0.0168
BR-A4BD/FD BR-A4BE7E1	26063.3307	-05.9420	1/9.9920	25003.3168	-05.9419	179,9990	-0.0139	0.0001	-0.0607	0.0614
BR-A4BF7F2	25152.2639	-07.7114	166.0682	25152.2631	-67,7113	165.9855	-0.0008	0.0001	-0.0827	0.0910
BR-A4BF7F3	24962.1625	-68.8943	166.0702	24962.1586	-68.8942	166.0012	-0.0039	0.0001	-0.0690	0.0729
BR-A4BF7F4	24943.3934	-70.1587	165.9920	24943.3824	-70.1588	185.9584	-0.0109	-0.0001	-0.0338	0.0535
BR-A4BPMAF1	25166 4850	-70.0878	71 0130	25166 4554	-70.0878	71 6237	-0.0132	0.0014	0.0270	0.8534
BR-A4BPM6F2	25154.5627	-66.5429	71.0130	25154.6039	-66.5411	71.5828	0.0412	0.0018	0.5498	0.9698
BR-A4CX2F1	25523.0857	-62.8705	124.0660	25523.0981	-62.8702	124.1344	0.0125	0.0003	0.0684	0.1403
BR-A4CX2F2	25328.5307	-62.8157	124.0280	25328.4911	-62.8157	124.0550	-0.0395	-0.0000	0.0270	0.0479
BR-A4CX2F3 BR-A4CX2F4	25574 7490	-02.8830	74.2310	25574 7038	-02.8834	74.3083	-0.1480	0.0002	0.13/3	0.2190
BR-A4SF2F1	25128.9256	-66.8238	159.0210	25129.0020	-66.8234	159.0153	0.0764	0.0004	-0.0057	0.2110
BR-A4SF2F4	25264.1421	-66.8860	-79.5340	25264.1070	-66.8855	-79.6182	-0.0351	0.0005	-0.0842	0.2249
BR-A4SF2F5	25264.1590	-86.8856	79.4700	25264.1989	-86,8853	79.4328	0.0399	0.0004	-0.0372	0.1741
BR-A4BD8F1 BR-A4BD8F2	24653 4184	-75.3044	180.0100	24653.4249	-75.3044	180.0300	0.00078	-0.0001	0.0200	0.0485
BR-A4BD8F3	24443.2358	-76.5816	180 0070	24443.2368	-76.5817	179,9931	0.0010	-0.0001	-0.0139	0.0544
BR-A4BD8F4	24470.0762	-77.9531	180.0070	24470.0193	-77.9533	179,9972	-0.0570	-0.0002	-0.0098	0.1043
BR-A4BD8F5	24172.7318	-77,8561	180.0060	24172.6933	-77.8563	180.0094	-0.0385	-0.0002	0.0034	0.0934
8R-448PM7F1 8R-448PM7F2	24525 8589	-74 7385	71.0130	24525 6803	-74.0032	71,2859	0.0033	0.0009	0.2729	0.4594
BR-A4CX3F1	24590.8398	-72.0821	124,0220	24590.8311	-72.0819	124.0843	-0.0085	0.0003	0.0423	0,1185
BR-A4CX3F2	24784.1468	-72.1570	124.0460	24784.1993	-72.1569	124.0737	0.0524	0.0001	0.0277	0.0765
BR-A4CX3F3	24835.3453	-72.1769	74.3210	24835.3659	-72.1767	74.3739	0.0208	0.0002	0.0529	0.0994
BR-A4CX3F4 BR-A4CV4F1	24830.3045	-74.1684	-/4.4330	24639,3958	-74.1691	150 1878	-0.0049	0.0002	0.0438	0.1200
BR-A4CY4F2	24475.8328	-74.1182	150.0400	24475.7792	-74.1182	149.9946	-0.0538	-0.0000	-0.0454	0.0705
BR-A4CY4F3	24689.1549	-74.1832	97.9500	24689.1596	-74.1830	98.0203	0.0046	0.0002	0.0703	0.1061
BR-A4CY4F4	24689.1984	-74.1826	-98.1040	24689.2687	-74.1827	-98.0018	0.0703	-0.0000	0.1022	0.1241
BR-64QD2F1 BR-64QD2F2	24602.1165	-70 78 11	230.1077	24602.1047	-70,7800	230.1005	0.0382	0.0001	-0.0173	0.1013
BR-A4QD2F3	24880.9749	-70.8634	229.9893	24881.0300	-70.8633	229.9782	0.0551	0.0000	0.0089	0.0598
BR-A4QD2F4	24839.0872	-71.3846	230.0161	24839,1228	-71.3846	230.0435	0.0355	0.0000	0.0274	0.0454
BR-A4QG2F1	24505.9033	-73.3951	230.0486	24505.8970	-73.3950	230.0402	-0.0063	0.0001	-0.0084	0.0394

Dalas

Vector Group CYU ANALYSIS-Auto Vectors: Groups: REFERENCE FINAL to FID ONLY

SA 2013.03.22 (x64)

A.Learning

Page 21 / 22

UNITS: Millimeters

227

WORKING FRAME: A::BOOSTER

Vector Group CYU ANALYSIS-Auto Vectors: Groups: REFERENCE FINAL to FID ONLY											
Name	Begin			End			Delta				
	R1	Theta1	Z1	R2	Theta2	Z2	dR	dTheta	dZ	Mag	
BR-A4QG2F2	24539.7338	-72.8635	229.9899	24539.7094	-72,8835	229.9532	-0.0242	0.0001	-0.0367	0.0524	
BR-A4QG2F3	24727.5715	-72.9304	230.0141	24727.5855	-72.9303	229.9750	0.0140	0.0001	-0.0391	0.0535	
BR-A4QG2F4	24693.9755	-73,4580	230.0599	24693.9760	-73,4578	230.0406	0.0005	0.0001	-0.0193	0.0582	
DD ICCVW1E1	24300.0008	-/9.1000	122 6300	24300.0020	-78,1007	120.0117	0.0442	0.0001	0.0133	0.0022	
BR-ISCAWIFT	24039.2038	-50,0090	132.0320	24039,2190	-80.0090	132,4834	-0.0442	-0.0000	-0.0460	0.1020	
BRJSCXW1F3	24283 5015	-80 1607	82 4530	24283 5668	-80 1606	82 4163	-0.0247	0.0001	-0.0367	0.0621	
BR-ISCXW1F4	24283 5662	-80,1610	-82 3710	24283 5582	-80,1610	-82 4045	-0.0080	-0.0000	-0.0335	0.0373	
BR-ISKIC1F1	24238.2383	-80.4843	-88.0000	24238.2150	-80.4843	-86.0368	-0.0233	-0.0001	-0.0388	0.0503	
BR-ISKIC1F2	24165.7654	-81.5165	-86.0000	24165.7056	-81.5166	-86.0095	-0.0597	-0.0001	-0.0095	0.0651	
BR-ISKIC1F3	23918.5292	-81.4282	-86.0000	23918.4893	-81.4285	-86.0212	-0.0399	-0.0003	-0.0212	0.1216	
BR-ISKIC1F4	23989.7284	-80.3654	-86.0000	23989,6805	-80.3655	-86.0262	-0.0479	-0.0001	-0.0262	0.0815	
BR-ISKIC2F1	23975.9645	-85.4787	-86.0000	23975.9315	-85.4787	-85.9885	-0.0330	0.0000	0.0115	0.0357	
BR-ISKIG2F2	23844,0841	-80.0022	-80.0000	23844.0/19	-80.0023	-80.0321	-0.0222	-0.0001	-0.0321	0.0515	
PR-ISKIC2F3	23090.1013	-50.0108	-86.0000	23090.1100	-00.0108	-00.0227	-0.0407	-0.0000	-0.0227	0.0510	
BR-ISPKU1F1	23980 0628	82 5265	71 0000	23980 0563	-82 5270	71 0054	-0.0065	-0.0014	0.0054	0.5784	
BR-ISPKU1F2	23972 5878	-82 6630	71,0000	23972 7009	-82 6653	70 9580	0.1130	-0.0013	-0.0420	0.5712	
BR-ISSMP1F1	23876.5628	-89.7611	124.8320	23876.5623	-89.7610	124,8185	-0.0003	0.0001	-0.0135	0.0614	
BR-ISSMP1F2	23878.6007	-90.7692	124.8279	23878.5933	-90.7691	124.8301	-0.0074	0.0001	0.0022	0.0415	
BR-ISSMP1F3	23778.4405	-90.7718	124.8911	23778.4342	-90.7718	124.8787	-0.0063	0.0001	-0.0124	0.0287	
BR-ISSMP1F4	23776.5634	-89.7601	124.8820	23776.5394	-89.7601	124.8577	-0.0240	0.0000	-0.0243	0.0358	
BR-A1QF1F1	24119.2378	-100.9341	230.0942	24119.2983	-100.9344	230.0323	0.0605	-0.0003	-0.0619	0.1422	
BR-A1QF1F2	24076.5697	-100.3969	230.0564	24076.6123	-100.3971	229.9981	0.0425	-0.0002	-0.0583	0.1095	
BR-A1QF1F3	24263.5042	-100.3155	230.0517	24203.0440	-100.3158	230.0293	0.0404	+0.0002	-0.0224	0.1082	
DR-AIGFIF4	24303.62222	-100.0408	132 5440	24303.8573	-100.0482	132 8154	0.0301	-0.0002	0.0391	0.1103	
BRJSCXW2E2	24232 4910	00 9810	132 5530	24232 5033	.00 8812	132 8440	0.0223	.0.0003	0.0010	0.1580	
BR-ISCXW2F3	24283.6206	-99.8403	82,2870	24283.6541	-99.8407	82,3585	0.0335	-0.0005	0.0715	0.2133	
BR-ISCXW2F4	24283.6821	-99.8410	-82.4670	24283,7326	-99.8413	-82.4183	0.0505	-0.0003	0.0487	0.1541	
BR-ISKIC3F1	23954.2334	-93.4460	-85.9845	23954.1920	-93.4466	-85.9702	-0.0414	+0.0006	0.0143	0.2579	
BR-ISKIC3F2	23985.4510	-94.5195	-86.0000	23985.5603	-94,5192	-85.9985	0.1092	0.0002	0.0015	0.1393	
BR-ISKIC3F3	23736.2028	-94.5871	-86.0000	23738.3508	-94.5887	-85.9706	0.1478	0.0004	0.0294	0.2129	
BR-ISKIC3F4	23704.6356	-93.4827	-86.0000	23704.6041	-93.4829	-80.9030	-0.0315	-0.0002	0.0364	0.1066	
BR-ISKIG4F1	24100.7302	-98.4834	-50.0000	24100.8404	-98.4833	-80.0200	0.1042	0.0000	-0.0200	0.10/5	
BR-ISKIC4F2	23080 7180	-00 8347	-88,0000	29230 2811	-00 8347	-88.0454	0.0380	-0.0001	0.0301	0.0575	
BRISKICAFA	23018 5543	-08 5717	-86 0000	23918 5195	-08 5710	-96 0021	.0.0340	0.0003	0.0021	0 1182	
BR-ISPKU2F1	23972.6999	-97.3374	71,0000	23972.9510	-97,3398	71.0448	0.2512	-0.0024	0.0448	1.0315	
BR-ISPKU2F2	23980.1762	-97.4749	71.0000	23980.2693	-97.4774	71.0090	0.0931	+0.0025	0.0090	1.0618	
RFC-F2	23551.0621	6.5508	142.2623	23551.0543	6.5513	142.2579	-0.0079	0.0005	-0.0043	0.1908	
RFC-F4	24151.9327	1.0869	139.5766	24151.9437	1.0877	139.4925	0.0110	0.0008	-0.0841	0.3409	
RFC-F5	24150.3834	1.4213	284.5555	24150.3338	1.4221	264.4222	-0.0496	0.0008	-0.1332	0.3484	
RFC-F6	24191.9050	1.8910	350.3790	24191,8497	1.8925	350.3224	-0,0553	8000.0	-0.0566	0.3527	
RFC-F/	24299.2985	5.0038	350,4999	24299,2330	5.0040	350.5459	-0.0000	0.0008	0.0490	0.3590	
RFC-F8	24282.8703	0.1424	202.4187	24282.8048	6 2442	122 1608	-0.0/14	0.0009	0.0284	0.3091	
CS DS VALVE US FACE CTR	24038 0051	.9 4834	0.0000	24038 7850	8 4831	-0.0037	0 7800	0.0003	0.0037	0 7041	
CS PIPE CTR	23776.9119	-0.8568	0.0000	23775.3939	-0.8568	1.3118	-1.5181	-0.0001	1.3118	2.0064	
CS PIPE MID CTR	23835.5819	-4.1110	0.0000	23837.7738	4,1106	0.2247	2.1919	0.0004	0.2247	2.2090	
CS US VALVE DS FACE CTR	23774.4947	0.2581	0.0000	23771.8073	0.2581	-0.7859	-2.6874	0.0000	-0.7859	2.8000	
DS 1 CTR	23999.0381	-172.1510	0.0000	23997.8793	-172.1515	1.0280	-1.1588	0.0004	1.0280	1.5573	
DS 2 CTR	23904.8427	-174.0084	0.0000	23905.5740	-174.0085	-0.7818	0.7313	-0.0002	-0.7818	1.0732	
DS 3 CTR	23774.3397	-179.8458	0.0000	23775.5196	-179.8458	-1.3063	1.1800	+0.0000	-1.3663	1.8053	
DS 4 CTR	23975.1631	172.5773	0.0000	23975.8370	172.5775	0.3829	0.6739	0.0002	0.3829	0.7800	
DS 5 CTR	23998.9360	172.1537	0.0000	23999,2179	172.1538	0.5329	0.2819	0.0001	0.5329	0.6041	

SA 2013.03.22 (x64)

WORKING FRAME: A::BOOSTER UNITS: Millimeters

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ
ВВЕДЕНИЕ
1. ГЕОДЕЗИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ЖИЗНЕННОГО ЦИКЛА УСКОРИТЕЛЕЙ ЗАРЯЖЕННЫХ ЧАСТИЦ8
1.1 Общие сведения об ускорителях заряженных
частиц
1.2 Сооружения для размещения ускорителей
заряженных частиц и создание современных
ускорительно-накопительных комплексов12
1.3 Вопросы проектирования ускорительно-
накопительных комплексов14
1.4 Допуски на геометрические параметры магнитных
систем ускорителей заряженных частиц19
1.5 Геодезическое оборудование для юстировки
магнитных элементов первых ускорителей
1.6 Геодезические работы при производстве и монтаже
элементов структуры отечественных ускорительных
комплексов
2. ОБЩИЕ ПРИНИЦЫ ПОСТРОЕНИЯ ОПОРНЫХ
ГЕОДЕЗИЧЕСКИХ СЕТЕЙ УНК
2.1 Основные задачи специальных геодезических
сетей УНК и их виды
2.2 Методика комплексного подхода к геодезическому
обеспечению жизненного цикла УНК54

4.3 Геодезическое обеспечение измерений	
квадрупольных и секступольных линз	
для бустера NSLS-II	119
5. ГЕОДЕЗИЧЕСКОЕ ОБЕСПЕЧЕНИЕ	
МОДЕРНИЗАЦИИ ИСТОЧНИКА СИНХРОТРОННОГО	С
ИЗЛУЧЕНИЯ 4-го ПОКОЛЕНИЯ ESRF-EBS	125
5.1 Европейский источник СИ	
(European Synchrotron Radiation Facility (ESRF))	125
5.2 Инженерно-геодезическое обеспечение стадий	
и способов монтажа физического оборудования	
ускорителей	142
6. ГАРМОНИЧЕСКИЙ АНАЛИЗ ДАННЫХ	
ГЕОДЕЗИЧЕСКИХ ИЗМЕРЕНИИ ДЛЯ ПАРАМЕТРОВ	
УСКОРИТЕЛЯ ЗАРЯЖЕННЫХ ЧАСТИЦ	145
6.1 Учет природы возникновения гармонических	
колебаний частиц УНК	145
6.2 Моделирование геодезических измерений	
программными продуктами Spatial Analyzer и PANDA	151
6.3 Проектирование специальной геодезической сети	
источника синхротронного излучения четвертого	1.64
поколения СКИФ	164
6.4 Реализация методики геодезического обеспечения	
для источника СИ четвертого поколения СКИФ	168
7. ГЕОДЕЗИЧЕСКИЙ МОНИТОРИНГ ФИЗИЧЕСКОГО	
ОБОРУДОВАНИЯ С УЧЕТОМ СПЕКТРАЛЬНОГО	1 = 0
АНАЛИЗА	173
7.1 Спектральное представление деформационных	
процессов несущих сооружений ускорителей	1 7 5
заряженных частиц	1/5
ЗАКЛЮЧЕНИЕ	180
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	183

Приложение 1 19) 7
Приложение 2 19	98
Приложение 3 19) 8
Приложение 4. Результаты циклов (2001-2013) геодезических измерений высотной сети ВЭПП-4м 19)9
Приложение 5. Результаты погрешностей углов и длин линий со станций лазерного трекера спроектированной сети с внесенными случайными погрешностями после уравнивания в программных пролуктах SA и PANDA 20)2
Приложение 6. Разница координат полученных после	
уравнивания в SA и PANDA от проектных)3
Приложение 7 20)5
Приложение 8 20)6
Приложение 9 20)7
Приложение 10. Результаты контрольного цикла	
геодезических измерений положения элементов	
бустера NSLS-II 20)7

Монография

Мурзинцев П. П., Буренков Д. Б., Полянский А. В., Сердаков Л. Е.

ГЕОДЕЗИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОЕКТИРОВАНИЯ, СТРОИТЕЛЬСТВА, ЭКСПЛУАТАЦИИ И МОНИТОРИНГА УСКОРИТЕЛЬНО-НАКОПИТЕЛЬНЫХ КОМПЛЕКСОВ

Подготовлено к печати ООО Агентство «Сибпринт» Подписано в печать 16.06.2021. Формат 60Х84/16. Бумага офсетная. Тираж 30 экз. Усл. печ. л. 13,49. Уч.-изд. л. 9,23. Заказ 2021/0616 Отпечатано в типографии ООО Издательство «Сибпринт». 630099, г. Новосибирск, ул. М. Горького, 39. Тел. +7 (383) 218-00-36, e-mail: izdat-nsk@list.ru. www.ifb.ru